1887

Abstract

All cell types must maintain the integrity of their membranes. The conserved bacterial membrane-associated protein PspA is a major effector acting upon extracytoplasmic stress and is implicated in protection of the inner membrane of pathogens, formation of biofilms and multi-drug-resistant persister cells. PspA and its homologues in Gram-positive bacteria and archaea protect the cell envelope whilst also supporting thylakoid biogenesis in cyanobacteria and higher plants. In enterobacteria, PspA is a dual function protein negatively regulating the Psp system in the absence of stress and acting as an effector of membrane integrity upon stress. We show that in the low-order oligomeric PspA regulatory complex associates with cardiolipin-rich, curved polar inner membrane regions. There, cardiolipin and the flotillin 1 homologue YqiK support the PspBC sensors in transducing a membrane stress signal to the PspA-PspF inhibitory complex. After stress perception, PspA high-order oligomeric effector complexes initially assemble in polar membrane regions. Subsequently, the discrete spatial distribution and dynamics of PspA effector(s) in lateral membrane regions depend on the actin homologue MreB and the peptidoglycan machinery protein RodZ. The consequences of loss of cytoplasmic membrane anionic lipids, MreB, RodZ and/or YqiK suggest that the mode of action of the PspA effector is closely associated with cell envelope organization.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078527-0
2014-11-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2374.html?itemId=/content/journal/micro/10.1099/mic.0.078527-0&mimeType=html&fmt=ahah

References

  1. Alyahya S. A., Alexander R., Costa T., Henriques A. O., Emonet T., Jacobs-Wagner C.. ( 2009;). RodZ, a component of the bacterial core morphogenic apparatus. Proc Natl Acad Sci U S A106:1239–1244 [CrossRef][PubMed]
    [Google Scholar]
  2. Arias-Cartin R., Grimaldi S., Arnoux P., Guigliarelli B., Magalon A.. ( 2012;). Cardiolipin binding in bacterial respiratory complexes: structural and functional implications. Biochim Biophys Acta1817:1937–1949 [CrossRef][PubMed]
    [Google Scholar]
  3. Ariöz C., Ye W., Bakali A., Ge C., Liebau J., Götzke H., Barth A., Wieslander Å., Mäler L.. ( 2013;). Anionic lipid binding to the foreign protein MGS provides a tight coupling between phospholipid synthesis and protein overexpression in Escherichia coli . Biochemistry52:5533–5544 [CrossRef][PubMed]
    [Google Scholar]
  4. Aseeva E., Ossenbühl F., Eichacker L. A., Wanner G., Soll J., Vothknecht U. C.. ( 2004;). Complex formation of Vipp1 depends on its α-helical PspA-like domain. J Biol Chem279:35535–35541 [CrossRef][PubMed]
    [Google Scholar]
  5. Aseeva E., Ossenbühl F., Sippel C., Cho W. K., Stein B., Eichacker L. A., Meurer J., Wanner G., Westhoff P.. & other authors ( 2007;). Vipp1 is required for basic thylakoid membrane formation but not for the assembly of thylakoid protein complexes. Plant Physiol Biochem45:119–128 [CrossRef][PubMed]
    [Google Scholar]
  6. Bach J. N., Bramkamp M.. ( 2013;). Flotillins functionally organize the bacterial membrane. Mol Microbiol88:1205–1217 [CrossRef][PubMed]
    [Google Scholar]
  7. Barák I., Muchová K., Wilkinson A. J., O’Toole P. J., Pavlendová N.. ( 2008;). Lipid spirals in Bacillus subtilis and their role in cell division. Mol Microbiol68:1315–1327 [CrossRef][PubMed]
    [Google Scholar]
  8. Bendezú F. O., Hale C. A., Bernhardt T. G., de Boer P. A.. ( 2009;). RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli . EMBO J28:193–204 [CrossRef][PubMed]
    [Google Scholar]
  9. Bergler H., Abraham D., Aschauer H., Turnowsky F.. ( 1994;). Inhibition of lipid biosynthesis induces the expression of the pspA gene. Microbiology140:1937–1944 [CrossRef][PubMed]
    [Google Scholar]
  10. Berthelmann F., Brüser T.. ( 2004;). Localization of the Tat translocon components in Escherichia coli . FEBS Lett569:82–88 [CrossRef][PubMed]
    [Google Scholar]
  11. Brown E. D., Vivas E. I., Walsh C. T., Kolter R.. ( 1995;). MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli . J Bacteriol177:4194–4197[PubMed]
    [Google Scholar]
  12. Bury-Moné S., Nomane Y., Reymond N., Barbet R., Jacquet E., Imbeaud S., Jacq A., Bouloc P.. ( 2009;). Global analysis of extracytoplasmic stress signaling in Escherichia coli . PLoS Genet5:e1000651 [CrossRef][PubMed]
    [Google Scholar]
  13. Darwin A. J.. ( 2005;). The phage-shock-protein response. Mol Microbiol57:621–628 [CrossRef][PubMed]
    [Google Scholar]
  14. Darwin A. J.. ( 2013;). Stress relief during host infection: the phage shock protein response supports bacterial virulence in various ways. PLoS Pathog9:e1003388 [CrossRef][PubMed]
    [Google Scholar]
  15. DeLisa M. P., Lee P., Palmer T., Georgiou G.. ( 2004;). Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway. J Bacteriol186:366–373 [CrossRef][PubMed]
    [Google Scholar]
  16. Dhamdhere G., Zgurskaya H. I.. ( 2010;). Metabolic shutdown in Escherichia coli cells lacking the outer membrane channel TolC. Mol Microbiol77:743–754 [CrossRef][PubMed]
    [Google Scholar]
  17. Domínguez-Escobar J., Chastanet A., Crevenna A. H., Fromion V., Wedlich-Söldner R., Carballido-López R.. ( 2011;). Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science333:225–228 [CrossRef][PubMed]
    [Google Scholar]
  18. Domínguez-Escobar J., Wolf D., Fritz G., Höfler C., Wedlich-Söldner R., Mascher T.. ( 2014;). Subcellular localization, interactions and dynamics of the phage-shock protein-like Lia response in Bacillus subtilis . Mol Microbiol92:716–732 [CrossRef][PubMed]
    [Google Scholar]
  19. Donovan C., Bramkamp M.. ( 2009;). Characterization and subcellular localization of a bacterial flotillin homologue. Microbiology155:1786–1799 [CrossRef][PubMed]
    [Google Scholar]
  20. Engl C., Jovanovic G., Lloyd L. J., Murray H., Spitaler M., Ying L., Errington J., Buck M.. ( 2009;). In vivo localizations of membrane stress controllers PspA and PspG in Escherichia coli . Mol Microbiol73:382–396 [CrossRef][PubMed]
    [Google Scholar]
  21. Engl C., Beek A. T., Bekker M., de Mattos J. T., Jovanovic G., Buck M.. ( 2011;). Dissipation of proton motive force is not sufficient to induce the phage shock protein response in Escherichia coli . Curr Microbiol62:1374–1385 [CrossRef][PubMed]
    [Google Scholar]
  22. Flores-Kim J., Darwin A. J.. ( 2012;). Phage shock protein C (PspC) of Yersinia enterocolitica is a polytopic membrane protein with implications for regulation of the Psp stress response. J Bacteriol194:6548–6559 [CrossRef][PubMed]
    [Google Scholar]
  23. Foss M. H., Eun Y.-J., Weibel D. B.. ( 2011;). Chemical-biological studies of subcellular organization in bacteria. Biochemistry50:7719–7734 [CrossRef][PubMed]
    [Google Scholar]
  24. Garner E. C., Bernard R., Wang W., Zhuang X., Rudner D. Z., Mitchison T.. ( 2011;). Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis . Science333:222–225 [CrossRef][PubMed]
    [Google Scholar]
  25. Hinderhofer M., Walker C. A., Friemel A., Stuermer C. A. O., Möller H. M., Reuter A.. ( 2009;). Evolution of prokaryotic SPFH proteins. BMC Evol Biol9:10 [CrossRef][PubMed]
    [Google Scholar]
  26. Horstman N. K., Darwin A. J.. ( 2012;). Phage shock proteins B and C prevent lethal cytoplasmic membrane permeability in Yersinia enterocolitica . Mol Microbiol85:445–460 [CrossRef][PubMed]
    [Google Scholar]
  27. Huvet M., Toni T., Sheng X., Thorne T., Jovanovic G., Engl C., Buck M., Pinney J. W., Stumpf M. P. H.. ( 2011;). The evolution of the phage shock protein response system: interplay between protein function, genomic organization, and system function. Mol Biol Evol28:1141–1155 [CrossRef][PubMed]
    [Google Scholar]
  28. Joly N., Burrows P. C., Engl C., Jovanovic G., Buck M.. ( 2009;). A lower-order oligomer form of phage shock protein A (PspA) stably associates with the hexameric AAA+transcription activator protein PspF for negative regulation. J Mol Biol394:764–775 [CrossRef][PubMed]
    [Google Scholar]
  29. Joly N., Engl C., Jovanovic G., Huvet M., Toni T., Sheng X., Stumpf M. P. H., Buck M.. ( 2010;). Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev34:797–827[PubMed]
    [Google Scholar]
  30. Jordan S., Hutchings M. I., Mascher T.. ( 2008;). Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev32:107–146[CrossRef]
    [Google Scholar]
  31. Jovanovic G., Lloyd L. J., Stumpf M. P. H., Mayhew A. J., Buck M.. ( 2006;). Induction and function of the phage shock protein extracytoplasmic stress response in Escherichia coli . J Biol Chem281:21147–21161 [CrossRef][PubMed]
    [Google Scholar]
  32. Jovanovic G., Engl C., Buck M.. ( 2009;). Physical, functional and conditional interactions between ArcAB and phage shock proteins upon secretin-induced stress in Escherichia coli . Mol Microbiol74:16–28 [CrossRef][PubMed]
    [Google Scholar]
  33. Jovanovic G., Engl C., Mayhew A. J., Burrows P. C., Buck M.. ( 2010;). Properties of the phage-shock-protein (Psp) regulatory complex that govern signal transduction and induction of the Psp response in Escherichia coli . Microbiology156:2920–2932 [CrossRef][PubMed]
    [Google Scholar]
  34. Jovanovic G., Mehta P., McDonald C., Davidson A. C., Uzdavinys P., Ying L., Buck M.. ( 2014;). The N-terminal amphipathic helices determine regulatory and effector functions of phage shock protein A (PspA) in Escherichia coli . J Mol Biol426:1498–1511 [CrossRef][PubMed]
    [Google Scholar]
  35. Kawai Y., Marles-Wright J., Cleverley R. M., Emmins R., Ishikawa S., Kuwano M., Heinz N., Bui N. K., Hoyland C. N.. & other authors ( 2011;). A widespread family of bacterial cell wall assembly proteins. EMBO J30:4931–4941 [CrossRef][PubMed]
    [Google Scholar]
  36. Kleerebezem M., Tommassen J.. ( 1993;). Expression of the pspA gene stimulates efficient protein export in Escherichia coli . Mol Microbiol7:947–956 [CrossRef][PubMed]
    [Google Scholar]
  37. Kobayashi R., Suzuki T., Yoshida M.. ( 2007;). Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol Microbiol66:100–109 [CrossRef][PubMed]
    [Google Scholar]
  38. Lenn T., Gkekas C. N., Bernard L., Engl C., Jovanovic G., Buck M., Ying L.. ( 2011;). Measuring the stoichiometry of functional PspA complexes in living bacterial cells by single molecule photobleaching. Chem Commun (Camb)47:400–402 [CrossRef][PubMed]
    [Google Scholar]
  39. Lima S., Guo M. S., Chaba R., Gross C. A., Sauer R. T.. ( 2013;). Dual molecular signals mediate the bacterial response to outer-membrane stress. Science340:837–841 [CrossRef][PubMed]
    [Google Scholar]
  40. Lloyd L. J., Jones S. E., Jovanovic G., Gyaneshwar P., Rolfe M. D., Thompson A., Hinton J. C., Buck M.. ( 2004;). Identification of a new member of the phage shock protein response in Escherichia coli, the phage shock protein G (PspG). J Biol Chem279:55707–55714 [CrossRef][PubMed]
    [Google Scholar]
  41. López D., Kolter R.. ( 2010;). Functional microdomains in bacterial membranes. Genes Dev24:1893–1902 [CrossRef][PubMed]
    [Google Scholar]
  42. Mehner D., Osadnik H., Lünsdorf H., Brüser T.. ( 2012;). The Tat system for membrane translocation of folded proteins recruits the membrane-stabilizing Psp machinery in Escherichia coli . J Biol Chem287:27834–27842 [CrossRef][PubMed]
    [Google Scholar]
  43. Mehta P., Jovanovic G., Lenn T., Bruckbauer A., Engl C., Ying L., Buck M.. ( 2013;). Dynamics and stoichiometry of a regulated enhancer-binding protein in live Escherichia coli cells. Nature Commun4:1997 [CrossRef][PubMed]
    [Google Scholar]
  44. Miller J. H.. ( 1992;). A Short Course in Bacterial Genetics: a Laboratory Manual and Handbook for Escherichia coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Model P., Jovanovic G., Dworkin J.. ( 1997;). The Escherichia coli phage-shock-protein (psp) operon. Mol Microbiol24:255–261 [CrossRef][PubMed]
    [Google Scholar]
  46. Olshausen P. v.,, Defeu Soufo H. J., Wicker K., Heintzmann R., Graumann P. L., Rohrbach A.. ( 2013;). Superresolution imaging of dynamic MreB filaments in B. subtilis – a multiple-motor-driven transport?. Biophys J105:1171–1181 [CrossRef][PubMed]
    [Google Scholar]
  47. Peck J. W., Bowden E. T., Burbelo P. D.. ( 2004;). Structure and function of human Vps20 and Snf7 proteins. Biochem J377:693–700 [CrossRef][PubMed]
    [Google Scholar]
  48. Raetz C. R. H.. ( 1986;). Molecular genetics of membrane phospholipid synthesis. Annu Rev Genet20:253–291 [CrossRef][PubMed]
    [Google Scholar]
  49. Renner L. D., Weibel D. B.. ( 2011;). Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci U S A108:6264–6269 [CrossRef][PubMed]
    [Google Scholar]
  50. Salje J., van den Ent F., de Boer P., Löwe J.. ( 2011;). Direct membrane binding by bacterial actin MreB. Mol Cell43:478–487 [CrossRef][PubMed]
    [Google Scholar]
  51. Takahashi H., Morioka R., Ito R., Oshima T., Altaf-Ul-Amin M., Ogasawara N., Kanaya S.. ( 2011;). Dynamics of time-lagged gene-to-metabolite networks of Escherichia coli elucidated by integrative omics approach. OMICS15:15–23 [CrossRef][PubMed]
    [Google Scholar]
  52. Tan B. K., Bogdanov M., Zhao J., Dowhan W., Raetz C. R. H., Guan Z.. ( 2012;). Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc Natl Acad Sci U S A109:16504–16509 [CrossRef][PubMed]
    [Google Scholar]
  53. Toni T., Jovanovic G., Huvet M., Buck M., Stumpf M. P. H.. ( 2011;). From qualitative data to quantitative models: analysis of the phage shock protein stress response in Escherichia coli . BMC Syst Biol5:69 [CrossRef][PubMed]
    [Google Scholar]
  54. Typas A., Banzhaf M., Gross C. A., Vollmer W.. ( 2012;). From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol10:123–136[PubMed]
    [Google Scholar]
  55. van den Ent F., Johnson C. M., Persons L., de Boer P., Löwe J.. ( 2010;). Bacterial actin MreB assembles in complex with cell shape protein RodZ. EMBO J29:1081–1090 [CrossRef][PubMed]
    [Google Scholar]
  56. van Teeffelen S., Wang S., Furchtgott L., Huang K. C., Wingreen N. S., Shaevitz J. W., Gitai Z.. ( 2011;). The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci U S A108:15822–15827 [CrossRef][PubMed]
    [Google Scholar]
  57. Vega N. M., Allison K. R., Samuels A. N., Klempner M. S., Collins J. J.. ( 2013;). Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc Natl Acad Sci U S A110:14420–14425 [CrossRef][PubMed]
    [Google Scholar]
  58. Vothknecht U. C., Otters S., Hennig R., Schneider D.. ( 2012;). Vipp1: a very important protein in plastids?!. J Exp Bot63:1699–1712 [CrossRef][PubMed]
    [Google Scholar]
  59. Vrancken K., De Keersmaeker S., Geukens N., Lammertyn E., Anné J., Van Mellaert L.. ( 2007;). pspA overexpression in Streptomyces lividans improves both Sec- and Tat-dependent protein secretion. Appl Microbiol Biotechnol73:1150–1157 [CrossRef][PubMed]
    [Google Scholar]
  60. Wallrodt I., Jelsbak L., Thomsen L. E., Brix L., Lemire S., Gautier L., Nielsen D. S., Jovanovic G., Buck M., Olsen J. E.. ( 2014;). Removal of the phage-shock protein PspB causes reduction of virulence in Salmonella enterica serovar Typhimurium independently of NRAMP1. J Med Microbiol63:788–795 [CrossRef][PubMed]
    [Google Scholar]
  61. Wang P., Kuhn A., Dalbey R. E.. ( 2010;). Global change of gene expression and cell physiology in YidC-depleted Escherichia coli . J Bacteriol192:2193–2209 [CrossRef][PubMed]
    [Google Scholar]
  62. Wells R. C., Hill R. B.. ( 2011;). The cytosolic domain of Fis1 binds and reversibly clusters lipid vesicles. PLoS ONE6:e21384 [CrossRef][PubMed]
    [Google Scholar]
  63. Westphal S., Heins L., Soll J., Vothknecht U. C.. ( 2001;). Vipp1 deletion mutant of Synechocystis: a connection between bacterial phage shock and thylakoid biogenesis?. Proc Natl Acad Sci U S A98:4243–4248 [CrossRef][PubMed]
    [Google Scholar]
  64. White C. L., Kitich A., Gober J. W.. ( 2010;). Positioning cell wall synthetic complexes by the bacterial morphogenetic proteins MreB and MreD. Mol Microbiol76:616–633 [CrossRef][PubMed]
    [Google Scholar]
  65. White M. J., Savaryn J. P., Bretl D. J., He H., Penoske R. M., Terhune S. S., Zahrt T. C.. ( 2011;). The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein. PLoS ONE6:e18175 [CrossRef][PubMed]
    [Google Scholar]
  66. Wickström D., Wagner S., Baars L., Ytterberg A. J., Klepsch M., van Wijk K. J., Luirink J., de Gier J.-W.. ( 2011;). Consequences of depletion of the signal recognition particle in Escherichia coli . J Biol Chem286:4598–4609 [CrossRef][PubMed]
    [Google Scholar]
  67. Yamaguchi S., Darwin A. J.. ( 2012;). Recent findings about the Yersinia enterocolitica phage shock protein response. J Microbiol50:1–7 [CrossRef][PubMed]
    [Google Scholar]
  68. Yamaguchi S., Gueguen E., Horstman N. K., Darwin A. J.. ( 2010;). Membrane association of PspA depends on activation of the phage-shock-protein response in Yersinia enterocolitica . Mol Microbiol78:429–443 [CrossRef][PubMed]
    [Google Scholar]
  69. Yamaguchi S., Reid D. A., Rothenberg E., Darwin A. J.. ( 2013;). Changes in Psp protein binding partners, localization and behaviour upon activation of the Yersinia enterocolitica phage shock protein response. Mol Microbiol87:656–671 [CrossRef][PubMed]
    [Google Scholar]
  70. Young B. P., Shin J. J. H., Orij R., Chao J. T., Li S. C., Guan X. L., Khong A., Jan E., Wenk M. R.. & other authors ( 2010;). Phosphatidic acid is a pH biosensor that links membrane biogenesis to metabolism. Science329:1085–1088 [CrossRef][PubMed]
    [Google Scholar]
  71. Zhang L., Sakamoto W.. ( 2013;). Possible function of VIPP1 in thylakoids: protection but not formation?. Plant Signal Behav8:e22860 [CrossRef][PubMed]
    [Google Scholar]
  72. Zhang L., Kato Y., Otters S., Vothknecht U. C., Sakamoto W.. ( 2012;). Essential role of VIPP1 in chloroplast envelope maintenance in Arabidopsis . Plant Cell24:3695–3707 [CrossRef][PubMed]
    [Google Scholar]
  73. Zhang N., Simpson T., Lawton E., Uzdavinys P., Joly N., Burrows P., Buck M.. ( 2013;). A key hydrophobic patch identified in an AAA? protein essential for its in trans inhibitory regulation. J Mol Biol425:2656–2669 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078527-0
Loading
/content/journal/micro/10.1099/mic.0.078527-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error