1887

Abstract

Members of the genus are specialists in the biosynthesis and accumulation of triacylglycerols (TAGs). As no transport protein related to TAG metabolism has yet been characterized in these bacteria, we used the available genomic information of RHA1 to perform a broad survey of genes coding for putative lipid transporter proteins in this oleaginous micro-organism. Among the seven genes encoding putative lipid transporters, (now called : lipid transporter protein) coding for an ATP-binding cassette protein was found clustered with others genes encoding enzymes catalysing the three putative acylation reactions of the Kennedy pathway for TAG synthesis. Overexpression of in the RHA1 strain led to an increase of approximately sixfold and threefold in biomass and TAG production, respectively, when cells were cultivated on palmitic acid and oleic acid. Moreover, overexpression of also promoted a significant increase in the uptake of a fluorescently labelled long-chain fatty acid (LCFA), as compared with the WT strain RHA1, and its further incorporation into the TAG fraction. Gluconate-grown cells showed increasing amounts of intracellular free fatty acids, but not of TAG, after overexpressing . Thus, for the first time to our knowledge, a transporter functionally related to TAG metabolism was identified in oleaginous rhodococci. Our results suggested that Ltp1 is an importer of LCFAs that plays a functional role in lipid homeostasis of RHA1.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078477-0
2014-07-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1523.html?itemId=/content/journal/micro/10.1099/mic.0.078477-0&mimeType=html&fmt=ahah

References

  1. Alvarez H. M., Steinbüchel A..( 2002;). Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol60:367–376 [CrossRef][PubMed]
    [Google Scholar]
  2. Alvarez H. M., Steinbüchel A.. 2010; Physiology, bio-chemistry and molecular biology of triacylglycerol accumulation by Rhodococcus. Biology of RhodococcusMicrobiology Monographsvol. 16263–290 Alvarez H. M., Steinbüchel A.. Heidelberg: Springer; [CrossRef]
    [Google Scholar]
  3. Alvarez H. M., Mayer F., Fabritius D., Steinbüchel A..( 1996;). Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol165:377–386 [CrossRef][PubMed]
    [Google Scholar]
  4. Alvarez A. F., Alvarez H. M., Kalscheuer R., Wältermann M., Steinbüchel A..( 2008;). Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. Microbiology154:2327–2335 [CrossRef][PubMed]
    [Google Scholar]
  5. Alvarez H. M., Silva R. A., Herrero M., Hernández A. M., Villalba M. S..( 2013;). Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics. J Mol Biochem2:69–78
    [Google Scholar]
  6. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M..& other authors ( 2008;). The RAST Server: rapid annotations using subsystems technology. BMC Genomics9:75 [CrossRef][PubMed]
    [Google Scholar]
  7. Black P. N., DiRusso C. C..( 2003;). Transmembrane movement of exogenous long-chain fatty acids: proteins, enzymes, and vectorial esterification. Microbiol Mol Biol Rev67:454–472 [CrossRef][PubMed]
    [Google Scholar]
  8. Borst P., Zelcer N., van Helvoort A..( 2000;). ABC transporters in lipid transport. Biochim Biophys Acta1486:128–144 [CrossRef][PubMed]
    [Google Scholar]
  9. Brandl H., Gross R. A., Lenz R. W., Fuller R. C..( 1988;). Pseudomonas oleovorans as a source of poly(hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol54:1977–1982[PubMed]
    [Google Scholar]
  10. Chen Y., Ding Y., Yang L., Yu J., Liu G., Wang X., Zhang S., Yu D., Song L..& other authors ( 2013;). Integrated omics study delineates the dynamics of lipid droplets in Rhodococcus opacus PD630. Nucleic Acids Res42:1052–1064 [CrossRef][PubMed]
    [Google Scholar]
  11. Dassa E., Bouige P..( 2001;). The ABC of ABCs: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol152:211–229 [CrossRef][PubMed]
    [Google Scholar]
  12. Davidson A. L., Chen J..( 2004;). ATP-binding cassette transporters in bacteria. Annu Rev Biochem73:241–268 [CrossRef][PubMed]
    [Google Scholar]
  13. Dean M., Hamon Y., Chimini G..( 2001;). The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res42:1007–1017[PubMed]
    [Google Scholar]
  14. Ding Y., Yang L., Zhang S., Wang Y., Du Y., Pu J., Peng G., Chen Y., Zhang H..& other authors ( 2012;). Identification of the major functional proteins of prokaryotic lipid droplets. J Lipid Res53:399–411 [CrossRef][PubMed]
    [Google Scholar]
  15. Doshi R., Nguyen T., Chang G..( 2013;). Transporter-mediated biofuel secretion. Proc Natl Acad Sci U S A110:7642–7647 [CrossRef][PubMed]
    [Google Scholar]
  16. Eckford P. D. W., Sharom F. J..( 2008;). Functional characterization of Escherichia coli MsbA: interaction with nucleotides and substrates. J Biol Chem283:12840–12850 [CrossRef][PubMed]
    [Google Scholar]
  17. Hara H., Stewart G. R., Mohn W. W..( 2010;). Involvement of a novel ABC transporter and monoalkyl phthalate ester hydrolase in phthalate ester catabolism by Rhodococcus jostii RHA1. Appl Environ Microbiol76:1516–1523 [CrossRef][PubMed]
    [Google Scholar]
  18. Hernández M. A., Arabolaza A., Rodríguez E., Gramajo H., Alvarez H. M..( 2013;). The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630. Appl Microbiol Biotechnol97:2119–2130 [CrossRef][PubMed]
    [Google Scholar]
  19. Hettema E. H., van Roermund C. W. T., Distel B., van den Berg M., Vilela C., Rodrigues-Pousada C., Wanders R. J., Tabak H. F..( 1996;). The ABC transporter proteins Pat1 and Pat2 are required for import of long-chain fatty acids into peroxisomes of Saccharomyces cerevisiae. EMBO J15:3813–3822[PubMed]
    [Google Scholar]
  20. Holder J. W., Ulrich J. C., DeBono A. C., Godfrey P. A., Desjardins C. A., Zucker J., Zeng Q., Leach A. L. B., Ghiviriga I..& other authors ( 2011;). Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet7:e1002219 [CrossRef][PubMed]
    [Google Scholar]
  21. Jorgensen J. H., Ferraro M. J..( 2009;). Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis49:1749–1755 [CrossRef][PubMed]
    [Google Scholar]
  22. Kalscheuer R., Arenskötter M., Steinbüchel A..( 1999;). Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids). Appl Microbiol Biotechnol52:508–515 [CrossRef][PubMed]
    [Google Scholar]
  23. Kaul G., Pattan G..( 2011;). MsbA ATP-binding cassette (ABC) transporter of E. coli: structure and possible flippase mechanism. Indian J Biochem Biophys48:7–13[PubMed]
    [Google Scholar]
  24. Kim S., Yamaoka Y., Ono H., Kim H., Shim D., Maeshima M., Martinoia E., Cahoon E. B., Nishida I., Lee Y..( 2013;). AtABCA9 transporter supplies fatty acids for lipid synthesis to the endoplasmic reticulum. Proc Natl Acad Sci U S A110:773–778 [CrossRef][PubMed]
    [Google Scholar]
  25. LeBlanc J. C., Gonçalves E. R., Mohn W. W..( 2008;). Global response to desiccation stress in the soil actinomycete Rhodococcus jostii RHA1. Appl Environ Microbiol74:2627–2636 [CrossRef][PubMed]
    [Google Scholar]
  26. MacEachran D. P., Sinskey A. J..( 2013;). The Rhodococcus opacus TadD protein mediates triacylgylycerol metabolism by regulating intracellular NAD(P)H pools. Microb Cell Fact12:104 [CrossRef][PubMed]
    [Google Scholar]
  27. MacEachran D. P., Prophete M. E., Sinskey A. J..( 2010;). The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation. Appl Environ Microbiol76:7217–7225 [CrossRef][PubMed]
    [Google Scholar]
  28. Maloy S. R., Ginsburgh C. L., Simons R. W., Nunn W. D..( 1981;). Transport of long and medium chain fatty acids by Escherichia coli K12. J Biol Chem256:3735–3742[PubMed]
    [Google Scholar]
  29. Marmur J..( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  30. Marqués A. M., Pinazo A., Farfan M., Aranda F. J., Teruel J. A., Ortiz A., Manresa A., Espuny M. J..( 2009;). The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem Phys Lipids158:110–117 [CrossRef][PubMed]
    [Google Scholar]
  31. McLeod M. P., Warren R. L., Hsiao W. W. L., Araki N., Myhre M., Fernandes C., Miyazawa D., Wong W., Lillquist A. L..& other authors ( 2006;). The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A103:15582–15587 [CrossRef][PubMed]
    [Google Scholar]
  32. Nagao K., Kimura Y., Mastuo M., Ueda K..( 2010;). Lipid outward translocation by ABC proteins. FEBS Lett584:2717–2723 [CrossRef][PubMed]
    [Google Scholar]
  33. Pohl A., Devaux P. F., Herrmann A..( 2005;). Function of prokaryotic and eukaryotic ABC proteins in lipid transport. Biochim Biophys Acta1733:29–52 [CrossRef][PubMed]
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T..( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Schlegel H. G., Kaltwasser H., Gottschalk G..( 1961;). [A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies]. Arch Mikrobiol38:209–222 [CrossRef][PubMed]
    [Google Scholar]
  36. Schneider E., Hunke S..( 1998;). ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev22:1–20 [CrossRef][PubMed]
    [Google Scholar]
  37. Swain K., Casabon I., Eltis L. D., Mohn W. W..( 2012;). Two transporters essential for reassimilation of novel cholate metabolites by Rhodococcus jostii RHA1. J Bacteriol194:6720–6727 [CrossRef][PubMed]
    [Google Scholar]
  38. van der Geize R., Hessels G. I., van Gerwen R., Vrijbloed J. W., van der Meijden P., Dijkhuizen L..( 2000;). Targeted disruption of the kstD gene encoding a 3-ketosteroid Δ1-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1. Appl Environ Microbiol66:2029–2036 [CrossRef][PubMed]
    [Google Scholar]
  39. van Meer G., Halter D., Sprong H., Somerharju P., Egmond M. R..( 2006;). ABC lipid transporters: extruders, flippases, or flopless activators?. FEBS Lett580:1171–1177 [CrossRef][PubMed]
    [Google Scholar]
  40. van Veen H. W., Venema K., Bolhuis H., Oussenko I., Kok J., Poolman B., Driessen A. J. M., Konings W. N..( 1996;). Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc Natl Acad Sci U S A93:10668–10672 [CrossRef][PubMed]
    [Google Scholar]
  41. Velamakanni S., Yao Y., Gutmann D. A. P., van Veen H. W..( 2008;). Multidrug transport by the ABC transporter Sav1866 from Staphylococcus aureus. Biochemistry47:9300–9308 [CrossRef][PubMed]
    [Google Scholar]
  42. Villalba M. S., Hernández M. A., Silva R. A., Álvarez H. M..( 2013;). Genome sequences of triacylglycerol metabolism in Rhodococcus as a platform for comparative genomics. J Mol Biochem2:94–105
    [Google Scholar]
  43. Wältermann M., Steinbüchel A..( 2005;). Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol187:3607–3619 [CrossRef][PubMed]
    [Google Scholar]
  44. Wältermann M., Luftmann H., Baumeister D., Kalscheuer R., Steinbüchel A..( 2000;). Rhodococcus opacus strain PD630 as a new source of high-value single-cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiology146:1143–1149[PubMed]
    [Google Scholar]
  45. Warhurst A. M., Fewson C. A..( 1994;). Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol14:29–73 [CrossRef][PubMed]
    [Google Scholar]
  46. Zhou Z., White K. A., Polissi A., Georgopoulos C., Raetz C. R. H..( 1998;). Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J Biol Chem273:12466–12475 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078477-0
Loading
/content/journal/micro/10.1099/mic.0.078477-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error