1887

Abstract

was engineered for the production of even- and odd-chain fatty acids (FAs) by fermentation. Co-production of thiolase, hydroxybutyryl-CoA dehydrogenase, crotonase and -enoyl-CoA reductase from a synthetic operon allowed the production of butyrate, hexanoate and octanoate. Elimination of native fermentation pathways by genetic deletion (Δ, Δ, Δ, Δ, Δ) helped eliminate undesired by-products and increase product yields. Initial butyrate production rates were high (0.7 g l h) but quickly levelled off and further study suggested this was due to product toxicity and/or acidification of the growth medium. Results also showed that endogenous thioesterases significantly influenced product formation. In particular, deletion of the thioesterase gene substantially increased hexanoate production while decreasing the production of butyrate. was also engineered to co-produce enzymes for even-chain FA production (described above) together with a coenzyme B-dependent pathway for the production of propionyl-CoA, which allowed the production of odd-chain FAs (pentanoate and heptanoate). The B-dependent pathway used here has the potential to allow the production of odd-chain FAs from a single growth substrate (glucose) in a more energy-efficient manner than the prior methods.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078329-0
2014-07-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1513.html?itemId=/content/journal/micro/10.1099/mic.0.078329-0&mimeType=html&fmt=ahah

References

  1. Baek J. M., Mazumdar S., Lee S. W., Jung M. Y., Lim J. H., Seo S. W., Jung G. Y., Oh M. K..( 2013;). Butyrate production in engineered Escherichia coli with synthetic scaffolds. Biotechnol Bioeng110:2790–2794 [CrossRef][PubMed]
    [Google Scholar]
  2. Bobik T. A., Xu Y., Jeter R. M., Otto K. E., Roth J. R..( 1997;). Propanediol utilization genes (pdu) of Salmonella typhimurium: three genes for the propanediol dehydratase. J Bacteriol179:6633–6639[PubMed]
    [Google Scholar]
  3. Bond-Watts B. B., Bellerose R. J., Chang M. C. Y..( 2011;). Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol7:222–227 [CrossRef][PubMed]
    [Google Scholar]
  4. Choi K., Jeon B. S., Kim B. C., Oh M. K., Um Y., Sang B. I..( 2013;). In situ biphasic extractive fermentation for hexanoic acid production from sucrose by megasphaera elsdenii NCIMB 702410. Appl Biochem Biotechnol171:1094–1107 [CrossRef][PubMed]
    [Google Scholar]
  5. Clomburg J. M., Gonzalez R..( 2011;). Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol Bioeng108:867–879 [CrossRef][PubMed]
    [Google Scholar]
  6. Clomburg J. M., Vick J. E., Blankschien M. D., Rodríguez-Moyá M., Gonzalez R..( 2012;). A synthetic biology approach to engineer a functional reversal of the β-oxidation cycle. ACS Synth Biol1:541–554 [CrossRef][PubMed]
    [Google Scholar]
  7. Colby G. D., Chen J. S..( 1992;). Purification and properties of 3-hydroxybutyryl-coenzyme A dehydrogenase from Clostridium beijerinckii (“Clostridium butylicum”) NRRL B593. Appl Environ Microbiol58:3297–3302[PubMed]
    [Google Scholar]
  8. Dekishima Y., Lan E. I., Shen C. R., Cho K. M., Liao J. C..( 2011;). Extending carbon chain length of 1-butanol pathway for 1-hexanol synthesis from glucose by engineered Escherichia coli. J Am Chem Soc133:11399–11401 [CrossRef][PubMed]
    [Google Scholar]
  9. Dellomonaco C., Fava F., Gonzalez R..( 2010;). The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact9:3 [CrossRef][PubMed]
    [Google Scholar]
  10. Dellomonaco C., Clomburg J. M., Miller E. N., Gonzalez R..( 2011;). Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature476:355–359 [CrossRef][PubMed]
    [Google Scholar]
  11. Desbois A. P., Smith V. J..( 2010;). Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol85:1629–1642 [CrossRef][PubMed]
    [Google Scholar]
  12. Fischer C. R., Tseng H. C., Tai M., Prather K. L., Stephanopoulos G..( 2010;). Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli. Appl Microbiol Biotechnol88:265–275 [CrossRef][PubMed]
    [Google Scholar]
  13. Hartmanis M. G., Stadtman T. C..( 1982;). Isolation of a selenium-containing thiolase from Clostridium kluyveri: identification of the selenium moiety as selenomethionine. Proc Natl Acad Sci U S A79:4912–4916 [CrossRef][PubMed]
    [Google Scholar]
  14. Jang Y. S., Woo H. M., Im J. A., Kim I. H., Lee S. Y..( 2013;). Metabolic engineering of Clostridium acetobutylicum for enhanced production of butyric acid. Appl Microbiol Biotechnol97:9355–9363 [CrossRef][PubMed]
    [Google Scholar]
  15. Jarboe L. R., Grabar T. B., Yomano L. P., Shanmugan K. T., Ingram L. O..( 2007;). Development of ethanologenic bacteria. Adv Biochem Eng Biotechnol108:237–261[PubMed]
    [Google Scholar]
  16. Jeon B. S., Kim B. C., Um Y., Sang B. I..( 2010;). Production of hexanoic acid from d-galactitol by a newly isolated Clostridium sp. BS-1. Appl Microbiol Biotechnol88:1161–1167 [CrossRef][PubMed]
    [Google Scholar]
  17. Jiang L., Wang J., Liang S., Wang X., Cen P., Xu Z..( 2010;). Production of butyric acid from glucose and xylose with immobilized cells of Clostridium tyrobutyricum in a fibrous-bed bioreactor. Appl Biochem Biotechnol160:350–359 [CrossRef][PubMed]
    [Google Scholar]
  18. Johnson C. L., Pechonick E., Park S. D., Havemann G. D., Leal N. A., Bobik T. A..( 2001;). Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene. J Bacteriol183:1577–1584 [CrossRef][PubMed]
    [Google Scholar]
  19. Leal N. A., Havemann G. D., Bobik T. A..( 2003;). PduP is a coenzyme-a-acylating propionaldehyde dehydrogenase associated with the polyhedral bodies involved in B12-dependent 1,2-propanediol degradation by Salmonella enterica serovar Typhimurium LT2. Arch Microbiol180:353–361 [CrossRef][PubMed]
    [Google Scholar]
  20. Lennen R. M., Pfleger B. F..( 2012;). Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol30:659–667 [CrossRef][PubMed]
    [Google Scholar]
  21. Lim J. H., Seo S. W., Kim S. Y., Jung G. Y..( 2013;). Refactoring redox cofactor regeneration for high-yield biocatalysis of glucose to butyric acid in Escherichia coli. Bioresour Technol135:568–573 [CrossRef][PubMed]
    [Google Scholar]
  22. Lu X. F., Vora H., Khosla C..( 2008;). Overproduction of free fatty acids in E. coli: implications for biodiesel production. Metab Eng10:333–339 [CrossRef][PubMed]
    [Google Scholar]
  23. Machado H. B., Dekishima Y., Luo H., Lan E. I., Liao J. C..( 2012;). A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. Metab Eng14:504–511 [CrossRef][PubMed]
    [Google Scholar]
  24. Martin C. H., Dhamankar H., Tseng H. C., Sheppard M. J., Reisch C. R., Prather K. L. J..( 2013;). A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-γ-butyrolactone. Nat Commun4:1414 [CrossRef][PubMed]
    [Google Scholar]
  25. Mayer K. M., Shanklin J..( 2007;). Identification of amino acid residues involved in substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided approach. BMC Plant Biol7:1 [CrossRef][PubMed]
    [Google Scholar]
  26. McMahon M. D., Prather K. L..( 2014;). Functional screening and in vitro analysis reveal thioesterases with enhanced substrate specificity profiles that improve short-chain fatty acid production in Escherichia coli. Appl Environ Microbiol80:1042–1050 [CrossRef][PubMed]
    [Google Scholar]
  27. Nunn W. D., Simons R. W., Egan P. A., Maloy S. R..( 1979;). Kinetics of the utilization of medium and long chain fatty acids by mutant of Escherichia coli defective in the fadL gene. J Biol Chem254:9130–9134[PubMed]
    [Google Scholar]
  28. Peralta-Yahya P. P., Zhang F., del Cardayre S. B., Keasling J. D..( 2012;). Microbial engineering for the production of advanced biofuels. Nature488:320–328 [CrossRef][PubMed]
    [Google Scholar]
  29. Royce L. A., Liu P., Stebbins M. J., Hanson B. C., Jarboe L. R..( 2013;). The damaging effects of short chain fatty acids on Escherichia coli membranes. Appl Microbiol Biotechnol97:8317–8327 [CrossRef][PubMed]
    [Google Scholar]
  30. Sambrook J., Russell D..( 2001;). Molecular Cloning: A Laboratory Manual, 3rd ed.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Seedorf H., Fricke W. F., Veith B., Brüggemann H., Liesegang H., Strittmatter A., Miethke M., Buckel W., Hinderberger J..& other authors ( 2008;). The genome of Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A105:2128–2133 [CrossRef][PubMed]
    [Google Scholar]
  32. Seregina T. A., Shakulov R. S., Debabov V. G., Mironov A. S..( 2010;). Construction of a butyrate-producing E. coli strain without the use of heterologous genes. Appl Biochem Microbiol46:745–754 [CrossRef]
    [Google Scholar]
  33. Shen C. R., Lan E. I., Dekishima Y., Baez A., Cho K. M., Liao J. C..( 2011;). Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol77:2905–2915 [CrossRef][PubMed]
    [Google Scholar]
  34. Sliwkowski M. X., Hartmanis M. G..( 1984;). Simultaneous single-step purification of thiolase and NADP-dependent 3-hydroxybutyryl-CoA dehydrogenase from Clostridium kluyveri. Anal Biochem141:344–347 [CrossRef][PubMed]
    [Google Scholar]
  35. Sliwkowski M. X., Stadtman T. C..( 1985;). Incorporation and distribution of selenium into thiolase from Clostridium kluyveri. J Biol Chem260:3140–3144[PubMed]
    [Google Scholar]
  36. Steen E. J., Kang Y., Bokinsky G., Hu Z., Schirmer A., McClure A., Del Cardayre S. B., Keasling J. D..( 2010;). Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature463:559–562 [CrossRef][PubMed]
    [Google Scholar]
  37. Tseng H. C., Prather K. L..( 2012;). Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways. Proc Natl Acad Sci U S A109:17925–17930 [CrossRef][PubMed]
    [Google Scholar]
  38. Tseng H. C., Harwell C. L., Martin C. H., Prather K. L. J..( 2010;). Biosynthesis of chiral 3-hydroxyvalerate from single propionate-unrelated carbon sources in metabolically engineered E. coli. Microb Cell Fact9:96 [CrossRef][PubMed]
    [Google Scholar]
  39. von Hugo H., Schoberth S., Madan V. K., Gottschalk G..( 1972;). Coenzyme specificity of dehydrogenases and fermentation of pyruvate by clostridia. Arch Mikrobiol87:189–202 [CrossRef][PubMed]
    [Google Scholar]
  40. Waterson R. M., Hill R. L..( 1972;). Enoyl coenzyme A hydratase (crotonase). Catalytic properties of crotonase and its possible regulatory role in fatty acid oxidation. J Biol Chem247:5258–5265[PubMed]
    [Google Scholar]
  41. Wei D., Liu X., Yang S. T..( 2013;). Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Bioresour Technol129:553–560 [CrossRef][PubMed]
    [Google Scholar]
  42. Zhang C. H., Yang H., Yang F. X., Ma Y. J..( 2009;). Current progress on butyric acid production by fermentation. Curr Microbiol59:656–663 [CrossRef][PubMed]
    [Google Scholar]
  43. Zhang X., Li M., Agrawal A., San K. Y..( 2011;). Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases. Metab Eng13:713–722 [CrossRef][PubMed]
    [Google Scholar]
  44. Zhu H., Gonzalez R., Bobik T. A..( 2011;). Coproduction of acetaldehyde and hydrogen during glucose fermentation by Escherichia coli.. Appl Environ Microbiol77:6441–6450 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078329-0
Loading
/content/journal/micro/10.1099/mic.0.078329-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error