1887

Abstract

The rapid emergence of multidrug-resistant (MDR) bacterial pathogens poses a major threat for human health. In recent years, genome sequencing has unveiled many poorly expressed antibiotic clusters in actinomycetes. Here, we report a well-defined ecological collection of >800 actinomycetes obtained from sites in the Himalaya and Qinling mountains, and we used these in a concept study to see how efficiently antibiotics can be elicited against MDR pathogens isolated recently from the clinic. Using 40 different growth conditions, 96 actinomycetes were identified – predominantly – that produced antibiotics with efficacy against the MDR clinical isolates referred to as ESKAPE pathogens: , , , , and/or . Antimicrobial activities that fluctuated strongly with growth conditions were correlated with specific compounds, including borrelidin, resistomycin, carbomethoxy-phenazine, and 6,7,8- and 5,6,8-trimethoxy-3-methylisocoumarin, of which the latter was not described previously. Our work provided insights into the potential of actinomycetes as producers of drugs with efficacy against clinical isolates that have emerged recently and also underlined the importance of targeting a specific pathogen.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078295-0
2014-08-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1714.html?itemId=/content/journal/micro/10.1099/mic.0.078295-0&mimeType=html&fmt=ahah

References

  1. Ahmed S., Craney A., Pimentel-Elardo S. M., Nodwell J. R.. ( 2013;). A synthetic, species-specific activator of secondary metabolism and sporulation in Streptomyces coelicolor . ChemBioChem14:83–91 [CrossRef][PubMed]
    [Google Scholar]
  2. Baltz R. H.. ( 2007;). Antimicrobials from actinomycetes: back to the future. Microbe2:125–131
    [Google Scholar]
  3. Baltz R. H.. ( 2008;). Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol8:557–563 [CrossRef][PubMed]
    [Google Scholar]
  4. Bentley S. D., Chater K. F., Cerdeño-Tárraga A. M., Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H.. & other authors ( 2002;). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature417:141–147 [CrossRef][PubMed]
    [Google Scholar]
  5. Boucher H. W., Corey G. R.. ( 2008;). Epidemiology of methicillin-resistant Staphylococcus aureus . Clin Infect Dis46:Suppl 5S344–S349 [CrossRef][PubMed]
    [Google Scholar]
  6. Burt S.. ( 2004;). Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol94:223–253 [CrossRef][PubMed]
    [Google Scholar]
  7. Challis G. L., Hopwood D. A.. ( 2003;). Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci U S A100:Suppl 214555–14561 [CrossRef][PubMed]
    [Google Scholar]
  8. Chater K. F., Biró S., Lee K. J., Palmer T., Schrempf H.. ( 2010;). The complex extracellular biology of Streptomyces . FEMS Microbiol Rev34:171–198 [CrossRef][PubMed]
    [Google Scholar]
  9. Claessen D., Rozen D. E., Kuipers O. P., Søgaard-Andersen L., van Wezel G. P.. ( 2014;). Bacterial solutions to multicellularity; a tale of biofilms, filaments and fruiting bodies. Nat Rev Microbiol12:115–124[CrossRef]
    [Google Scholar]
  10. CLSI( 2004;). Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  11. Colson S., van Wezel G. P., Craig M., Noens E. E., Nothaft H., Mommaas A. M., Titgemeyer F., Joris B., Rigali S.. ( 2008;). The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor . Microbiology154:373–382 [CrossRef][PubMed]
    [Google Scholar]
  12. Craney A., Ozimok C., Pimentel-Elardo S. M., Capretta A., Nodwell J. R.. ( 2012;). Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem Biol19:1020–1027 [CrossRef][PubMed]
    [Google Scholar]
  13. Cruz-Morales P., Vijgenboom E., Iruegas-Bocardo F., Girard G., Yáñez-Guerra L. A., Ramos-Aboites H. E., Pernodet J. L., Anné J., van Wezel G. P., Barona-Gómez F.. ( 2013;). The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island. Genome Biol Evol5:1165–1175 [CrossRef][PubMed]
    [Google Scholar]
  14. Davies J. C.. ( 2002;). Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatr Respir Rev3:128–134 [CrossRef][PubMed]
    [Google Scholar]
  15. Fischbach M. A., Walsh C. T.. ( 2009;). Antibiotics for emerging pathogens. Science325:1089–1093 [CrossRef][PubMed]
    [Google Scholar]
  16. Girard G., Traag B. A., Sangal V., Mascini N., Hoskisson P. A., Goodfellow M., van Wezel G. P.. ( 2013;). A novel taxonomic marker that discriminates between morphologically complex actinomycetes. Open Biol3:130073[CrossRef]
    [Google Scholar]
  17. Giske C. G., Monnet D. L., Cars O., Carmeli Y.. ReAct-Action on Antibiotic Resistance ( 2008;). Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob Agents Chemother52:813–821 [CrossRef][PubMed]
    [Google Scholar]
  18. Habibi D., Ogloff N., Jalili R. B., Yost A., Weng A. P., Ghahary A., Ong C. J.. ( 2012;). Borrelidin, a small molecule nitrile-containing macrolide inhibitor of threonyl-tRNA synthetase, is a potent inducer of apoptosis in acute lymphoblastic leukemia. Invest New Drugs30:1361–1370 [CrossRef][PubMed]
    [Google Scholar]
  19. Haupt I., Wähnert U., Pitra C., Löber G., Luck G., Eckardt K.. ( 1975;). Effects of the antibiotic resistomycin on the synthesis of macromolecules. Z Allg Mikrobiol15:411–421 [CrossRef][PubMed]
    [Google Scholar]
  20. Hayakawa M., Nonomura H.. ( 1987;). Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol65:501–509 [CrossRef]
    [Google Scholar]
  21. Hayakawa M., Nonomura H.. ( 1989;). A new method for the intensive isolation of actinomycetes from soil. Actinomycetologica3:95–104 [CrossRef]
    [Google Scholar]
  22. Hegde V. R., Wittreich H., Patel M. G., Horan A. C., Hart R. F., Troyanovich J. J., Puar M. S., Gullo V. P.. ( 1989;). Naturally produced isocoumarins: inhibitors of calmodulin-sensitive cyclic guanosine 3′,5′-monophosphate phosphodiesterase. J Ind Microbiol4:209–213 [CrossRef]
    [Google Scholar]
  23. Hopwood D. A.. ( 2007;). Streptomyces in Nature and Medicine: The Antibiotic Makers New York: Oxford University Press;
    [Google Scholar]
  24. Karnetová J., Tax J., Stajner K., Van?k Z., Krumphanzl V.. ( 1983;). Production of phenazines by Streptomyces cinnamonensis . Folia Microbiol (Praha)28:51–53 [CrossRef][PubMed]
    [Google Scholar]
  25. Katoh K., Asimenos G., Toh H.. ( 2009;). Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol537:39–64 [CrossRef][PubMed]
    [Google Scholar]
  26. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. ( 2000;). Practical Streptomyces Genetics Norwich: The John Innes Foundation;
    [Google Scholar]
  27. Kim H. K., Saifullah, Khan S., Wilson E. G., Kricun S. D., Meissner A., Goraler S., Deelder A. M., Choi Y. H., Verpoorte R.. ( 2010;). Metabolic classification of South American Ilex species by NMR-based metabolomics. Phytochemistry71:773–784 [CrossRef][PubMed]
    [Google Scholar]
  28. Klevens R. M., Edwards J. R., Tenover F. C., McDonald L. C., Horan T., Gaynes R.. National Nosocomial Infections Surveillance System ( 2006;). Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992–2003. Clin Infect Dis42:389–391 [CrossRef][PubMed]
    [Google Scholar]
  29. Küster E., Williams S. T.. ( 1964;). Selection of media for isolation of Streptomycetes . Nature202:928–929 [CrossRef][PubMed]
    [Google Scholar]
  30. Lazzarini A., Cavaletti L., Toppo G., Marinelli F.. ( 2000;). Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek78:399–405 [CrossRef][PubMed]
    [Google Scholar]
  31. MacNeil D. J., Gewain K. M., Ruby C. L., Dezeny G., Gibbons P. H., MacNeil T.. ( 1992;). Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene111:61–68 [CrossRef][PubMed]
    [Google Scholar]
  32. Miyadoh S.. ( 1993;). Research on antibiotic screening in Japan over the last decade: a producing microorganism approach. Actinomycetologica7:100–106 [CrossRef]
    [Google Scholar]
  33. Nair R., Chanda S.. ( 2006;). Activity of some medicinal plants against certain pathogenic bacterial strains. Indian J Pharmacol38:142–144 [CrossRef]
    [Google Scholar]
  34. Nass G., Hasenbank R.. ( 1970;). Effect of Borrelidin on the threonyl-tRNA-synthetase activity and the regulation of threonine-biosynthetic enzymes in Saccharomyces cerivisiae. . Mol Gen Genet108:28–32 [CrossRef][PubMed]
    [Google Scholar]
  35. Ng Z. Y., Amsaveni S.. ( 2012;). Isolation, screening and characterization of antibiotic-producing actinomycetes from rhizosphere region of different plants from a farm of Sungai Ramal Luar, Malaysia. J Adv Biomed Pathobiol Res2:96–107
    [Google Scholar]
  36. Nothaft H., Rigali S., Boomsma B., Swiatek M., McDowall K. J., van Wezel G. P., Titgemeyer F.. ( 2010;). The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Mol Microbiol75:1133–1144 [CrossRef][PubMed]
    [Google Scholar]
  37. Ohnishi Y., Ishikawa J., Hara H., Suzuki H., Ikenoya M., Ikeda H., Yamashita A., Hattori M., Horinouchi S.. ( 2008;). Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol190:4050–4060 [CrossRef][PubMed]
    [Google Scholar]
  38. Okami Y., Hotta K.. ( 1988;). Search and discovery of new antibiotics. Actinomycetes in Biotechnology33–67 Goodfellow M., Williams S. T., Mordarski M.. London: Academic Press; [CrossRef]
    [Google Scholar]
  39. Payne D. J., Gwynn M. N., Holmes D. J., Pompliano D. L.. ( 2007;). Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov6:29–40 [CrossRef][PubMed]
    [Google Scholar]
  40. Rice L. B.. ( 2008;). Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis197:1079–1081 [CrossRef][PubMed]
    [Google Scholar]
  41. Rigali S., Nothaft H., Noens E. E., Schlicht M., Colson S., Müller M., Joris B., Koerten H. K., Hopwood D. A.. & other authors ( 2006;). The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol61:1237–1251 [CrossRef][PubMed]
    [Google Scholar]
  42. Rigali S., Titgemeyer F., Barends S., Mulder S., Thomae A. W., Hopwood D. A., van Wezel G. P.. ( 2008;). Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces . EMBO Rep9:670–675 [CrossRef][PubMed]
    [Google Scholar]
  43. Roggo B. E., Petersen F., Delmendo R., Jenny H. B., Peter H. H., Roesel J.. ( 1994;). 3-Alkanoyl-5-hydroxymethyl tetronic acid homologues and resistomycin: new inhibitors of HIV-1 protease. I. Fermentation, isolation and biological activity. J Antibiot (Tokyo)47:136–142 [CrossRef][PubMed]
    [Google Scholar]
  44. Römer A.. ( 1982;). 1H NMR spectra of substituted phenazines. Org Magnet Res19:66–68 [CrossRef]
    [Google Scholar]
  45. Sajid I., Shaaban K. A., Hasnain S.. ( 2011;). Antitumour compounds from a saline soil isolate, Streptomyces griseoincarnatus CTF15. Nat Prod Res25:549–559 [CrossRef][PubMed]
    [Google Scholar]
  46. Sánchez S., Chávez A., Forero A., García-Huante Y., Romero A., Sánchez M., Rocha D., Sánchez B., Avalos M.. & other authors ( 2010;). Carbon source regulation of antibiotic production. J Antibiot (Tokyo)63:442–459 [CrossRef][PubMed]
    [Google Scholar]
  47. Shiono Y., Shiono N., Seo S., Oka S., Yamazaki Y.. ( 2002;). Effects of polyphenolic anthrone derivatives, resistomycin and hypercin, on apoptosis in human megakaryoblastic leukemia CMK-7 cell line. Z Naturforsch C57:923–929[PubMed][CrossRef]
    [Google Scholar]
  48. Singh L. S., Baruah I., Bora T. C.. ( 2006;). Actinomycetes of Loktak habitat: isolation and screening for antimicrobial activities. Biotechnology5:217–221 [CrossRef]
    [Google Scholar]
  49. Spellberg B., Guidos R., Gilbert D., Bradley J., Boucher H. W., Scheld W. M., Bartlett J. G., Edwards J. Jr. Infectious Diseases Society of America ( 2008;). The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis46:155–164 [CrossRef][PubMed]
    [Google Scholar]
  50. Świątek M. A., Tenconi E., Rigali S., van Wezel G. P.. ( 2012;). Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J Bacteriol194:1136–1144 [CrossRef][PubMed]
    [Google Scholar]
  51. Takahashi Y., Omura S.. ( 2003;). Isolation of new actinomycete strains for the screening of new bioactive compounds. J Gen Appl Microbiol49:141–154 [CrossRef][PubMed]
    [Google Scholar]
  52. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  53. Thakur D., Yadav A., Gogoi B. K., Bora T. C.. ( 2007;). Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tripura, India, for antimicrobial metabolites. J Med Mycol17:242–249 [CrossRef]
    [Google Scholar]
  54. Tran M. C., Claros M. C., Goldstein E. J.. ( 2013;). Therapy of Clostridium difficile infection: perspectives on a changing paradigm. Expert Opin Pharmacother14:2375–2386 [CrossRef][PubMed]
    [Google Scholar]
  55. van Wezel G. P., McDowall K. J.. ( 2011;). The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep28:1311–1333 [CrossRef][PubMed]
    [Google Scholar]
  56. van Wezel G. P., McKenzie N. L., Nodwell J. R.. ( 2009;). Applying the genetics of secondary metabolism in model actinomycetes to the discovery of new antibiotics. Methods Enzymol458:117–141 [CrossRef][PubMed]
    [Google Scholar]
  57. Vijayabharathi R., Bruheim P., Andreassen T., Raja D. S., Devi P. B., Sathyabama S., Priyadarisini V. B.. ( 2011;). Assessment of resistomycin, as an anticancer compound isolated and characterized from Streptomyces aurantiacus AAA5. J Microbiol49:920–926 [CrossRef][PubMed]
    [Google Scholar]
  58. Wakabayashi T., Kageyama R., Naruse N., Tsukahara N., Funahashi Y., Kitoh K., Watanabe Y.. ( 1997;). Borrelidin is an angiogenesis inhibitor; disruption of angiogenic capillary vessels in a rat aorta matrix culture model. J Antibiot (Tokyo)50:671–676[CrossRef]
    [Google Scholar]
  59. Zhu H., Sandiford S. K., van Wezel G. P.. ( 2014;). Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol41:371–386 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078295-0
Loading
/content/journal/micro/10.1099/mic.0.078295-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error