1887

Abstract

strain DPN7 is a remarkable betaproteobacterium because of its extraordinary ability to use the synthetic disulfide 3,3′-dithiodipropionic acid (DTDP) as the sole carbon source and electron donor for aerobic growth. One application of DTDP is as a precursor substrate for biotechnically synthesized polythioesters (PTEs), which are interesting non-degradable biopolymers applicable for plastics materials. Metabolic engineering for optimization of PTE production requires an understanding of DTDP conversion. The genome of strain DPN7 was sequenced and annotated. The circular chromosome was found to be composed of 4 740 516 bp and 4112 predicted ORFs, whereas the circular plasmid consisted of 23 610 bp and 24 predicted ORFs. The genes participating in DTDP catabolism had been characterized in detail previously, but knowing the complete genome sequence and with support of Tn : : -induced mutants, putatively involved transporter proteins and a transcriptional regulator were also identified. Most probably, DTDP is transported into the cell by a specific tripartite tricarboxylate transport system and is then cleaved by the disulfide reductase LpdA, sulfoxygenated by the 3-mercaptopropionate dioxygenase Mdo, activated by the CoA ligase SucCD and desulfinated by the acyl-CoA dehydrogenase-like desulfinase AcdA. Regulation of this pathway is presumably performed by a transcriptional regulator of the xenobiotic response element family. The excessive sulfate that is inevitably produced is secreted by the cells by a unique sulfate exporter of the CPA (cation : proton antiporter) superfamily.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078279-0
2014-07-01
2021-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1401.html?itemId=/content/journal/micro/10.1099/mic.0.078279-0&mimeType=html&fmt=ahah

References

  1. Aguilar-Barajas E., Díaz-Pérez C., Ramírez-Díaz M. I., Riveros-Rosas H., Cervantes C. ( 2011). Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals 24:687–707 [View Article][PubMed]
    [Google Scholar]
  2. Al-Farawati R., van den Berg C. M. G. ( 2001). Thiols in coastal waters of the western North Sea and English Channel. Environ Sci Technol 35:1902–1911 [View Article][PubMed]
    [Google Scholar]
  3. Antoine R., Jacob-Dubuisson F., Drobecq H., Willery E., Lesjean S., Locht C. ( 2003). Overrepresentation of a gene family encoding extracytoplasmic solute receptors in Bordetella. J Bacteriol 185:1470–1474 [View Article][PubMed]
    [Google Scholar]
  4. Antoine R., Huvent I., Chemlal K., Deray I., Raze D., Locht C., Jacob-Dubuisson F. ( 2005). The periplasmic binding protein of a tripartite tricarboxylate transporter is involved in signal transduction. J Mol Biol 351:799–809 [View Article][PubMed]
    [Google Scholar]
  5. Bailey J. L., Cole R. D. ( 1959). Studies on the reaction of sulfite with proteins. J Biol Chem 234:1733–1739[PubMed]
    [Google Scholar]
  6. Barra Caracciolo A., Fajardo C., Grenni P., Saccà M. L., Amalfitano S., Ciccoli R., Martin M., Gibello A. ( 2010). The role of a groundwater bacterial community in the degradation of the herbicide terbuthylazine. FEMS Microbiol Ecol 71:127–136 [View Article][PubMed]
    [Google Scholar]
  7. Bendtsen J. D., Nielsen H., Widdick D., Palmer T., Brunak S. ( 2005). Prediction of twin-arginine signal peptides. BMC Bioinformatics 6:167 [View Article][PubMed]
    [Google Scholar]
  8. Berlyn M. K. B., Low K. B., Rudd K. E. ( 1996). Linkage map of Escherichia coli K-12. Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn.1715–1902 Neidhardt F. C. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Bick J. A., Dennis J. J., Zylstra G. J., Nowack J., Leustek T. ( 2000). Identification of a new class of 5′-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria. J Bacteriol 182:135–142 [View Article][PubMed]
    [Google Scholar]
  10. Brigham C. J., Reimer E. N., Rha C., Sinskey A. J. ( 2012). Examination of PHB depolymerases in Ralstonia eutropha: further elucidation of the roles of enzymes in PHB homeostasis. AMB Express 2:26 [View Article][PubMed]
    [Google Scholar]
  11. Brüggemann C., Denger K., Cook A. M., Ruff J. ( 2004). Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology 150:805–816 [View Article][PubMed]
    [Google Scholar]
  12. Bruland N., Wübbeler J. H., Steinbüchel A. ( 2009). 3-Mercaptopropionate dioxygenase, a cysteine dioxygenase homologue, catalyzes the initial step of 3-mercaptopropionate catabolism in the 3,3-thiodipropionic acid-degrading bacterium Variovorax paradoxus. J Biol Chem 284:660–672 [View Article][PubMed]
    [Google Scholar]
  13. Bürgmann H., Howard E. C., Ye W., Sun F., Sun S., Napierala S., Moran M. A. ( 2007). Transcriptional response of Silicibacter pomeroyi DSS-3 to dimethylsulfoniopropionate (DMSP). Environ Microbiol 9:2742–2755 [View Article][PubMed]
    [Google Scholar]
  14. Burtnick M. N., DeShazer D., Nair V., Gherardini F. C., Brett P. J. ( 2010). Burkholderia mallei cluster 1 type VI secretion mutants exhibit growth and actin polymerization defects in RAW 264.7 murine macrophages. Infect Immun 78:88–99 [View Article][PubMed]
    [Google Scholar]
  15. Christiaen S. E. A., Brackman G., Nelis H. J., Coenye T. ( 2011). Isolation and identification of quorum quenching bacteria from environmental samples. J Microbiol Methods 87:213–219 [View Article][PubMed]
    [Google Scholar]
  16. Codognoto L., Winter E., Paschoal J. A. R., Suffredini H. B., Cabral M. F., Machado S. A. S., Rath S. ( 2007). Electrochemical behavior of dopamine at a 3,3′-dithiodipropionic acid self-assembled monolayers. Talanta 72:427–433 [View Article][PubMed]
    [Google Scholar]
  17. Coenye T., Vanlaere E., Samyn E., Falsen E., Larsson P., Vandamme P. ( 2005). Advenella incenata gen. nov., sp. nov., a novel member of the Alcaligenaceae, isolated from various clinical samples. Int J Syst Evol Microbiol 55:251–256 [View Article][PubMed]
    [Google Scholar]
  18. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. & other authors ( 2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:DatabaseD141–D145 [View Article][PubMed]
    [Google Scholar]
  19. Conway T. ( 1992). The Entner–Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev 103:1–28 [View Article][PubMed]
    [Google Scholar]
  20. Cook A. M., Denger K. ( 2002). Dissimilation of the C2 sulfonates. Arch Microbiol 179:1–6 [View Article][PubMed]
    [Google Scholar]
  21. Cook A. M., Denger K., Smits T. H. M. ( 2006). Dissimilation of C3-sulfonates. Arch Microbiol 185:83–90 [View Article][PubMed]
    [Google Scholar]
  22. Copley S. D. ( 2000). Evolution of a metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem Sci 25:261–265 [View Article][PubMed]
    [Google Scholar]
  23. Crane B. R., Siegel L. M., Getzoff E. D. ( 1995). Sulfite reductase structure at 1.6 A: evolution and catalysis for reduction of inorganic anions. Science 270:59–67 [View Article][PubMed]
    [Google Scholar]
  24. da Silva G. P., Mack M., Contiero J. ( 2009). Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27:30–39 [View Article][PubMed]
    [Google Scholar]
  25. Dam B., Mandal S., Ghosh W., Das Gupta S. K., Roy P. ( 2007). The S4-intermediate pathway for the oxidation of thiosulfate by the chemolithoautotroph Tetrathiobacter kashmirensis and inhibition of tetrathionate oxidation by sulfite. Res Microbiol 158:330–338 [View Article][PubMed]
    [Google Scholar]
  26. Dam B., Ghosh W., Das Gupta S. K. ( 2009). Conjugative Type 4 secretion system of a novel large plasmid from the chemoautotroph Tetrathiobacter kashmirensis and construction of shuttle vectors for Alcaligenaceae. Appl Environ Microbiol 75:4362–4373 [View Article][PubMed]
    [Google Scholar]
  27. De Ley J., Segers P., Kersters K., Mannheim W., Lievens A. ( 1986). Intra- and intergeneric similarities of the Bordetella ribosomal ribonucleic acid cistrons: proposal for a new family Alcaligenaceae. Int J Syst Bacteriol 36:405–414 [View Article]
    [Google Scholar]
  28. Desvaux M., Hébraud M., Talon R., Henderson I. R. ( 2009). Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17:139–145 [View Article][PubMed]
    [Google Scholar]
  29. Eichhorn E., van der Ploeg J. R., Leisinger T. ( 2000). Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems. J Bacteriol 182:2687–2695 [View Article][PubMed]
    [Google Scholar]
  30. Elbanna K., Lütke-Eversloh T., Jendrossek D., Luftmann H., Steinbüchel A. ( 2004). Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases. Arch Microbiol 182:212–225 [View Article][PubMed]
    [Google Scholar]
  31. Espinosa-Victoria D., López-Reyes L., De La Cruz-Benítez A. ( 2009). Use of 16S rRNA gene for characterization of phosphate-solubilizing bacteria associated with corn. Rev Fitotec Mex 32:31–37
    [Google Scholar]
  32. Feng C., Tollin G., Enemark J. H. ( 2007). Sulfite oxidizing enzymes. Biochim Biophys Acta 1774:527–539 [View Article][PubMed]
    [Google Scholar]
  33. Friedrich B., Hogrefe C., Schlegel H. G. ( 1981). Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus. J Bacteriol 147:198–205[PubMed]
    [Google Scholar]
  34. Friedrich C. G., Bardischewsky F., Rother D., Quentmeier A., Fischer J. ( 2005). Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259 [View Article][PubMed]
    [Google Scholar]
  35. Ghosh W., Bagchi A., Mandal S., Dam B., Roy P. ( 2005). Tetrathiobacter kashmirensis gen. nov., sp. nov., a novel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic betaproteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir, India. Int J Syst Evol Microbiol 55:1779–1787 [View Article][PubMed]
    [Google Scholar]
  36. Ghosh W., George A., Agarwal A., Raj P., Alam M., Pyne P., Das Gupta S. K. ( 2011). Whole-genome shotgun sequencing of the sulfur-oxidizing chemoautotroph Tetrathiobacter kashmirensis. J Bacteriol 193:5553–5554 [View Article][PubMed]
    [Google Scholar]
  37. Gibello A., Vela A. I., Martín M., Barra-Caracciolo A., Grenni P., Fernández-Garayzábal J. F. ( 2009). Reclassification of the members of the genus Tetrathiobacter Ghosh et al. 2005 to the genus Advenella Coenye et al. 2005. Int J Syst Evol Microbiol 59:1914–1918 [View Article][PubMed]
    [Google Scholar]
  38. Gunnison A. F. ( 1981). Sulphite toxicity: a critical review of in vitro and in vivo data. Food Cosmet Toxicol 19:667–682 [View Article][PubMed]
    [Google Scholar]
  39. Hachani A., Lossi N. S., Hamilton A., Jones C., Bleves S., Albesa-Jové D., Filloux A. ( 2011). Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J Biol Chem 286:12317–12327 [View Article][PubMed]
    [Google Scholar]
  40. Hand C. E., Honek J. F. ( 2005). Biological chemistry of naturally occurring thiols of microbial and marine origin. J Nat Prod 68:293–308 [View Article][PubMed]
    [Google Scholar]
  41. Hood R. D., Singh P., Hsu F., Güvener T., Carl M. A., Trinidad R. R., Silverman J. M., Ohlson B. B., Hicks K. G. & other authors ( 2010). A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7:25–37 [View Article][PubMed]
    [Google Scholar]
  42. Hunter W. J., Manter D. K. ( 2008). Bio-reduction of selenite to elemental red selenium by Tetrathiobacter kashmirensis. Curr Microbiol 57:83–88 [View Article][PubMed]
    [Google Scholar]
  43. Huvent I., Belrhali H., Antoine R., Bompard C., Locht C., Jacob-Dubuisson F., Villeret V. ( 2006). Structural analysis of Bordetella pertussis BugE solute receptor in a bound conformation. Acta Crystallogr D Biol Crystallogr 62:1375–1381 [View Article][PubMed]
    [Google Scholar]
  44. Jahreis K., Pimentel-Schmitt E. F., Brückner R., Titgemeyer F. ( 2008). Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev 32:891–907 [View Article][PubMed]
    [Google Scholar]
  45. Jani A. J., Cotter P. A. ( 2010). Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe 8:2–6 [View Article][PubMed]
    [Google Scholar]
  46. Jin F., Ding Y., Ding W., Reddy M. S., Fernando W. G., Du B. ( 2011). Genetic diversity and phylogeny of antagonistic bacteria against Phytophthora nicotianae isolated from tobacco rhizosphere. Int J Mol Sci 12:3055–3071 [View Article][PubMed]
    [Google Scholar]
  47. Jolkver E., Emer D., Ballan S., Krämer R., Eikmanns B. J., Marin K. ( 2009). Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J Bacteriol 191:940–948 [View Article][PubMed]
    [Google Scholar]
  48. Jollés-Bergeret B. ( 1974). Enzymatic and chemical synthesis of 3-sulfinopropionic acid, an analog of succinic acid. Eur J Biochem 42:349–353 [View Article][PubMed]
    [Google Scholar]
  49. Kanz C., Aldebert P., Althorpe N., Baker W., Baldwin A., Bates K., Browne P., van den Broek A., Castro M. & other authors ( 2005). The EMBL nucleotide sequence database. Nucleic Acids Res 33:D29–D33 [View Article][PubMed]
    [Google Scholar]
  50. Kappler U. ( 2007). Bacterial sulfite-oxidizing enzymes – enzymes for chemolithotrophs only. Microbial Sulfur Metabolism151–169 Dahl C., Friedrich C. G. Berlin: Springer;
    [Google Scholar]
  51. Kawada J., Lütke-Eversloh T., Steinbüchel A., Marchessault R. H. ( 2003). Physical properties of microbial polythioesters: characterization of poly(3-mercaptoalkanoates) synthesized by engineered Escherichia coli. Biomacromolecules 4:1698–1702 [View Article][PubMed]
    [Google Scholar]
  52. Kertesz M. A. ( 2000). Riding the sulfur cycle – metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev 24:135–175 [View Article][PubMed]
    [Google Scholar]
  53. Kertesz M. A., Mirleau P. ( 2004). The role of soil microbes in plant sulphur nutrition. J Exp Bot 55:1939–1945 [View Article][PubMed]
    [Google Scholar]
  54. Kiene R. P., Taylor B. F. ( 1988). Biotransformation of organosulphur compounds in sediments via 3-mercaptopropionate. Nature 332:148–150 [View Article]
    [Google Scholar]
  55. Kim D. Y., Lütke-Eversloh T., Elbanna K., Thakor N., Steinbüchel A. ( 2005). Poly(3-mercaptopropionate): a nonbiodegradable biopolymer. Biomacromolecules 6:897–901 [View Article][PubMed]
    [Google Scholar]
  56. Kirkwood K. M., Ebert S., Foght J. M., Fedorak P. M., Gray M. R. ( 2005). Bacterial biodegradation of aliphatic sulfides under aerobic carbon- or sulfur-limited growth conditions. J Appl Microbiol 99:1444–1454 [View Article][PubMed]
    [Google Scholar]
  57. Knauer S. H., Hartl-Spiegelhauer O., Schwarzinger S., Hänzelmann P., Dobbek H. ( 2012). The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers. FEBS J 279:816–831 [View Article][PubMed]
    [Google Scholar]
  58. Kondo H., Ishimoto M. ( 1972). Enzymatic formation of sulfite and acetate from sulfoacetaldehyde, a degradation product of taurine. J Biochem 72:487–489[PubMed]
    [Google Scholar]
  59. Kricheldorf H. R., Schwarz G. ( 2007). Poly(thioester)s. J Macromol Sci A 44:625–649 [View Article]
    [Google Scholar]
  60. Lin E. C. C. ( 1976). Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30:535–578 [View Article][PubMed]
    [Google Scholar]
  61. Lütke-Eversloh T., Steinbüchel A. ( 2003). Novel precursor substrates for polythioesters (PTE) and limits of PTE biosynthesis in Ralstonia eutropha. FEMS Microbiol Lett 221:191–196 [View Article][PubMed]
    [Google Scholar]
  62. Lütke-Eversloh T., Steinbüchel A. ( 2004). Microbial polythioesters. Macromol Biosci 4:165–174 [View Article][PubMed]
    [Google Scholar]
  63. Lütke-Eversloh T., Bergander K., Luftmann H., Steinbüchel A. ( 2001). Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology 147:11–19[PubMed]
    [Google Scholar]
  64. Lütke-Eversloh T., Fischer A., Remminghorst U., Kawada J., Marchessault R. H., Bögershausen A., Kalwei M., Eckert H., Reichelt R. & other authors ( 2002a). Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nat Mater 1:236–240 [View Article][PubMed]
    [Google Scholar]
  65. Lütke-Eversloh T., Kawada J., Marchessault R. H., Steinbüchel A. ( 2002b). Characterization of microbial polythioesters: physical properties of novel copolymers synthesized by Ralstonia eutropha. Biomacromolecules 3:159–166 [View Article][PubMed]
    [Google Scholar]
  66. Markowitz V. M., Chen I. M. A., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A., Jacob B., Huang J. & other authors ( 2012). IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res 40:D1D115–D122 [View Article][PubMed]
    [Google Scholar]
  67. Marvel C. S., Kotch A. ( 1951). Polythioesters. J Am Chem Soc 73:1100–1102 [View Article]
    [Google Scholar]
  68. Matsuoka M., Park S., An S. Y., Miyahara M., Kim S. W., Kamino K., Fushinobu S., Yokota A., Wakagi T., Shoun H. ( 2012). Advenella faeciporci sp. nov., a nitrite-denitrifying bacterium isolated from nitrifying–denitrifying activated sludge collected from a laboratory-scale bioreactor treating piggery wastewater. Int J Syst Evol Microbiol 62:2986–2990 [View Article][PubMed]
    [Google Scholar]
  69. Mayer J., Denger K., Hollemeyer K., Schleheck D., Cook A. M. ( 2012). (R)-Cysteate-nitrogen assimilation by Cupriavidus necator H16 with excretion of 3-sulfolactate: a patchwork pathway. Arch Microbiol 194:949–957 [View Article][PubMed]
    [Google Scholar]
  70. McFarland B. L. ( 1999). Biodesulfurization. Curr Opin Microbiol 2:257–264 [View Article][PubMed]
    [Google Scholar]
  71. Mirleau P., Wogelius R., Smith A., Kertesz M. A. ( 2005). Importance of organosulfur utilization for survival of Pseudomonas putida in soil and rhizosphere. Appl Environ Microbiol 71:6571–6577 [View Article][PubMed]
    [Google Scholar]
  72. Neumann L., Spinozzi F., Sinibaldi R., Rustichelli F., Pötter M., Steinbüchel A. ( 2008). Binding of the major phasin, PhaP1, from Ralstonia eutropha H16 to poly(3-hydroxybutyrate) granules. J Bacteriol 190:2911–2919 [View Article][PubMed]
    [Google Scholar]
  73. Overbeek R., Larsen N., Walunas T., D’Souza M., Pusch G., Selkov E. Jr, Liolios K., Joukov V., Kaznadzey D. & other authors ( 2003). The ERGO genome analysis and discovery system. Nucleic Acids Res 31:164–171 [View Article][PubMed]
    [Google Scholar]
  74. Parsons D. A., Heffron F. ( 2005). sciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun 73:4338–4345 [View Article][PubMed]
    [Google Scholar]
  75. Pfeiffer D., Jendrossek D. ( 2011). Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16. Microbiology 157:2795–2807 [View Article][PubMed]
    [Google Scholar]
  76. Pfeiffer D., Wahl A., Jendrossek D. ( 2011). Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol Microbiol 82:936–951 [View Article][PubMed]
    [Google Scholar]
  77. Pilhofer M., Bauer A. P., Schrallhammer M., Richter L., Ludwig W., Schleifer K.-H., Petroni G. ( 2007). Characterization of bacterial operons consisting of two tubulins and a kinesin-like gene by the novel Two-Step Gene Walking method. Nucleic Acids Res 35:e135 [View Article][PubMed]
    [Google Scholar]
  78. Pohlmann A., Fricke W. F., Reinecke F., Kusian B., Liesegang H., Cramm R., Eitinger T., Ewering C., Pötter M. & other authors ( 2006). Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262 [View Article][PubMed]
    [Google Scholar]
  79. Pötter M., Steinbüchel A. ( 2005). Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6:552–560 [View Article][PubMed]
    [Google Scholar]
  80. Pukatzki S., Ma A. T., Sturtevant D., Krastins B., Sarracino D., Nelson W. C., Heidelberg J. F., Mekalanos J. J. ( 2006). Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A 103:1528–1533 [View Article][PubMed]
    [Google Scholar]
  81. Rein U., Gueta R., Denger K., Ruff J., Hollemeyer K., Cook A. M. ( 2005). Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA. Microbiology 151:737–747 [View Article][PubMed]
    [Google Scholar]
  82. Reinecke F., Steinbüchel A. ( 2009). Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16:91–108 [View Article][PubMed]
    [Google Scholar]
  83. Romano A. H. ( 1986). Microbial sugar transport systems and their importance in biotechnology. Trends Biotechnol 4:207–213 [View Article]
    [Google Scholar]
  84. Rutherford K., Parkhill J., Crook J., Horsnell T., Rice P., Rajandream M. A., Barrell B. ( 2000). Artemis: sequence visualization and annotation. Bioinformatics 16:944–945 [View Article][PubMed]
    [Google Scholar]
  85. Saier M. H. Jr, Yen M. R., Noto K., Tamang D. G., Elkan C. ( 2009). The transporter classification database: recent advances. Nucleic Acids Res 37:DatabaseD274–D278 [View Article][PubMed]
    [Google Scholar]
  86. Saitou N., Nei M. ( 1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  87. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  88. Sanda F., Jirakanjana D., Hitomi M., Endo T. ( 2000). Cationic ring-opening polymerization of ϵ-thionocaprolactone: selective formation of polythioester. J Polym Sci A 38:4057–4061 [View Article]
    [Google Scholar]
  89. Saxena R. S., Gupta A. ( 1984). Electrochemical studies on the composition, stability-constants and thermodynamics of TI(I) complexes with dithiodipropionic acid. Monatsh Chem 115:1293–1298 [View Article]
    [Google Scholar]
  90. Schlegel H. G., Kaltwasser H., Gottschalk G. ( 1961). [A submersion method for culture of hydrogen-oxidizing bacteria: growth physiological studies]. Arch Mikrobiol 38:209–222 [View Article][PubMed]
    [Google Scholar]
  91. Schmalenberger A., Kertesz M. A. ( 2007). Desulfurization of aromatic sulfonates by rhizosphere bacteria: high diversity of the asfA gene. Environ Microbiol 9:535–545 [View Article][PubMed]
    [Google Scholar]
  92. Schmalenberger A., Hodge S., Bryant A., Hawkesford M. J., Singh B. K., Kertesz M. A. ( 2008). The role of Variovorax and other Comamonadaceae in sulfur transformations by microbial wheat rhizosphere communities exposed to different sulfur fertilization regimes. Environ Microbiol 10:1486–1500 [View Article][PubMed]
    [Google Scholar]
  93. Schmidt S., Sunyaev S., Bork P., Dandekar T. ( 2003). Metabolites: a helping hand for pathway evolution. Trends Biochem Sci 28:336–341 [View Article][PubMed]
    [Google Scholar]
  94. Schürmann M., Wübbeler J. H., Grote J., Steinbüchel A. ( 2011). Novel reaction of succinyl coenzyme A (Succinyl-CoA) synthetase: activation of 3-sulfinopropionate to 3-sulfinopropionyl-CoA in Advenella mimigardefordensis strain DPN7T during degradation of 3,3′-dithiodipropionic acid. J Bacteriol 193:3078–3089 [View Article][PubMed]
    [Google Scholar]
  95. Schürmann M., Deters A., Wübbeler J. H., Steinbüchel A. ( 2013). A novel 3-sulfinopropionyl coenzyme A (3SP-CoA) desulfinase from Advenella mimigardefordensis strain DPN7T acting as a key enzyme during catabolism of 3,3′-dithiodipropionic acid is a member of the acyl-CoA dehydrogenase superfamily. J Bacteriol 195:1538–1551 [View Article][PubMed]
    [Google Scholar]
  96. Shahi S. K., Rai A. K., Tyagi M. B., Sinha R. P., Kumar A. ( 2011). Rhizosphere of rice plants harbor bacteria with multiple plant growth promoting features. Afr J Biotechnol 42:8296–8305
    [Google Scholar]
  97. Shimoyama T., Yamazawa A., Ueno Y., Watanabe K. ( 2009). Phylogenetic analyses of bacterial communities developed in a cassette-electrode microbial fuel cell. Microbes Environ 24:188–192 [View Article][PubMed]
    [Google Scholar]
  98. Sievert S. M., Kiene R. P., Schulz-Vogt H. N. ( 2007). The sulfur cycle. Oceanography (Wash DC) 20:117–123 [View Article]
    [Google Scholar]
  99. Silverman J. M., Brunet Y. R., Cascales E., Mougous J. D. ( 2012). Structure and regulation of the type VI secretion system. Annu Rev Microbiol 66:453–472 [View Article][PubMed]
    [Google Scholar]
  100. Simon R. ( 1984). High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196:413–420 [View Article][PubMed]
    [Google Scholar]
  101. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Biotechnology (N Y) 1:784–791 [View Article]
    [Google Scholar]
  102. Staden R., Beal K. F., Bonfield J. K. ( 2000). The Staden package, 1998. Methods Mol Biol 132:115–130[PubMed]
    [Google Scholar]
  103. Steinbüchel A. ( 1991). Polyhydroxyalkanoic acids. Biomaterials123–213 Byrom D. Basingstoke: Macmillian;
    [Google Scholar]
  104. Steinbüchel A. ( 2005). Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Curr Opin Biotechnol 16:607–613 [View Article][PubMed]
    [Google Scholar]
  105. Tan I. K. P. ( 2004). Polyhydroxyalkanoate production from renewable resources. Concise Encyclopedia of Bioresource Technology653–662 Pandeym A. New York: Haworth;
    [Google Scholar]
  106. Tech M., Merkl R. ( 2003). yacop: enhanced gene prediction obtained by a combination of existing methods. In Silico Biol 3:441–451[PubMed]
    [Google Scholar]
  107. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  108. Todd J. D., Rogers R., Li Y. G., Wexler M., Bond P. L., Sun L., Curson A. R. J., Malin G., Steinke M., Johnston A. W. ( 2007). Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315:666–669 [View Article][PubMed]
    [Google Scholar]
  109. Tsutsumi H., Okada S., Oishi T. ( 1998). A potentially biodegradable polyamide containing disulfide bonds as a positive material for secondary batteries. Electrochim Acta 43:427–429 [View Article]
    [Google Scholar]
  110. van der Ploeg J. R., Weiss M. A., Saller E., Nashimoto H., Saito N., Kertesz M. A., Leisinger T. ( 1996). Identification of sulfate starvation-regulated genes in Escherichia coli: a gene cluster involved in the utilization of taurine as a sulfur source. J Bacteriol 178:5438–5446[PubMed]
    [Google Scholar]
  111. Vanlaere E., Hansraj F., Vandamme P. A. R., Govan J. R. W. ( 2006). Growth in Stewart’s medium is a simple, rapid and inexpensive screening tool for the identification of Burkholderia cepacia complex. J Cyst Fibros 5:137–139 [View Article][PubMed]
    [Google Scholar]
  112. Wagner A. ( 2012). Metabolic networks and their evolution. Adv Exp Med Biol 751:29–52 [View Article][PubMed]
    [Google Scholar]
  113. Wang Z.-X., Zhuge J., Fang H., Prior B. A. ( 2001). Glycerol production by microbial fermentation: a review. Biotechnol Adv 19:201–223 [View Article][PubMed]
    [Google Scholar]
  114. Wübbeler J. H., Lütke-Eversloh T., Van Trappen S., Vandamme P., Steinbüchel A. ( 2006). Tetrathiobacter mimigardefordensis sp. nov., isolated from compost, a betaproteobacterium capable of utilizing the organic disulfide 3,3′-dithiodipropionic acid. Int J Syst Evol Microbiol 56:1305–1310 [View Article][PubMed]
    [Google Scholar]
  115. Wübbeler J. H., Bruland N., Kretschmer K., Steinbüchel A. ( 2008). Novel pathway for catabolism of the organic sulfur compound 3,3′-dithiodipropionic acid via 3-mercaptopropionic acid and 3-sulfinopropionic acid to propionyl-coenzyme A by the aerobic bacterium Tetrathiobacter mimigardefordensis strain DPN7. Appl Environ Microbiol 74:4028–4035 [View Article][PubMed]
    [Google Scholar]
  116. Wübbeler J. H., Raberg M., Brandt U., Steinbüchel A. ( 2010). Dihydrolipoamide dehydrogenases of Advenella mimigardefordensis and Ralstonia eutropha catalyze cleavage of 3,3′-dithiodipropionic acid into 3-mercaptopropionic acid. Appl Environ Microbiol 76:7023–7028 [View Article][PubMed]
    [Google Scholar]
  117. Xia Y., Wübbeler J. H., Qi Q., Steinbüchel A. ( 2012). Employing a recombinant strain of Advenella mimigardefordensis for biotechnical production of Homopolythioesters from 3,3′-dithiodipropionic acid. Appl Environ Microbiol 78:3286–3297 [View Article][PubMed]
    [Google Scholar]
  118. Yoch D. C. ( 2002). Dimethylsulfoniopropionate: its sources, role in the marine food web, and biological degradation to dimethylsulfide. Appl Environ Microbiol 68:5804–5815 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078279-0
Loading
/content/journal/micro/10.1099/mic.0.078279-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error