1887

Abstract

Chitin degradation and subsequent -acetylglucosamine (GlcNAc) catabolism is thought to be a common trait of a large majority of actinomycetes. Utilization of aminosugars had been poorly investigated outside the model strain A3(2), and we examined here the genetic setting of the erythromycin producer for GlcNAc and chitin utilization, as well as the transcriptional control thereof. efficiently utilize GlcNAc most likely via the phosphotransferase system (PTS); however, this strain is not able to grow when chitin or ,′-diacetylchitobiose [(GlcNAc)] is the sole nutrient source, despite a predicted extensive chitinolytic system ( genes). The inability of to utilize chitin and (GlcNAc) is probably because of the loss of genes encoding the DasABC transporter for (GlcNAc) import, and genes for intracellular degradation of (GlcNAc) by β--acetylglucosaminidases. Transcription analyses revealed that in all putative and GlcNAc utilization genes are repressed by DasR, whereas in DasR displayed either activating or repressing functions whether it targets genes involved in the polymer degradation or genes for GlcNAc dimer and monomer utilization, respectively. A transcriptomic analysis further showed that GlcNAc not only activates the transcription of GlcNAc catabolism genes but also activates gene expression, as opposed to the previously reported GlcNAc-mediated catabolite repression in . Finally, synteny exploration revealed an identical genetic background for chitin utilization in other rare actinomycetes, which suggests that screening procedures that used only the chitin-based protocol for selective isolation of antibiotic-producing actinomycetes could have missed the isolation of many industrially promising strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078261-0
2014-09-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/1914.html?itemId=/content/journal/micro/10.1099/mic.0.078261-0&mimeType=html&fmt=ahah

References

  1. Barke J., Seipke R. F., Grüschow S., Heavens D., Drou N., Bibb M. J., Goss R. J., Yu D. W., Hutchings M. I.. ( 2010;). A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. . BMC Biol 8:, 109. [CrossRef][PubMed]
    [Google Scholar]
  2. Barnhart M. M., Lynem J., Chapman M. R.. ( 2006;). GlcNAc-6P levels modulate the expression of curli fibers by Escherichia coli. . J Bacteriol 188:, 5212–5219. [CrossRef][PubMed]
    [Google Scholar]
  3. Bertram R., Schlicht M., Mahr K., Nothaft H., Saier M. H. Jr, Titgemeyer F.. ( 2004;). In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2). . J Bacteriol 186:, 1362–1373. [CrossRef][PubMed]
    [Google Scholar]
  4. Bertram R., Rigali S., Wood N., Lulko A. T., Kuipers O. P., Titgemeyer F.. ( 2011;). Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. . J Bacteriol 193:, 3525–3536. [CrossRef][PubMed]
    [Google Scholar]
  5. Bredholt H., Fjaervik E., Johnsen G., Zotchev S. B.. ( 2008;). Actinomycetes from sediments in the Trondheim fjord, Norway: diversity and biological activity. . Mar Drugs 6:, 12–24. [CrossRef][PubMed]
    [Google Scholar]
  6. Brzezinska M. S., Lalke-Porczyk E., Donderski W., Walczak M.. ( 2009;). Degradation of chitin in natural environment: role of actinomycetes. . J Polish Ecology 57:, 229–238.
    [Google Scholar]
  7. Colson S., Stephan J., Hertrich T., Saito A., van Wezel G. P., Titgemeyer F., Rigali S.. ( 2007;). Conserved cis-acting elements upstream of genes composing the chitinolytic system of streptomycetes are DasR-responsive elements. . J Mol Microbiol Biotechnol 12:, 60–66. [CrossRef][PubMed]
    [Google Scholar]
  8. Colson S., van Wezel G. P., Craig M., Noens E. E., Nothaft H., Mommaas A. M., Titgemeyer F., Joris B., Rigali S.. ( 2008;). The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. . Microbiology 154:, 373–382. [CrossRef][PubMed]
    [Google Scholar]
  9. Craig M., Lambert S., Jourdan S., Tenconi E., Colson S., Maciejewska M., Ongena M., Martin J. F., van Wezel G. P., Rigali S.. ( 2012;). Unsuspected control of siderophore production by N-acetylglucosamine in streptomycetes. . Environ Microbiol Rep 4:, 512–521. [CrossRef][PubMed]
    [Google Scholar]
  10. Fink D., Weißschuh N., Reuther J., Wohlleben W., Engels A.. ( 2002;). Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). . Mol Microbiol 46:, 331–347. [CrossRef][PubMed]
    [Google Scholar]
  11. Foley S., Stolarczyk E., Mouni F., Brassart C., Vidal O., Aïssi E., Bouquelet S., Krzewinski F.. ( 2008;). Characterisation of glutamine fructose-6-phosphate amidotransferase (EC 2.6.1.16) and N-acetylglucosamine metabolism in Bifidobacterium. . Arch Microbiol 189:, 157–167. [CrossRef][PubMed]
    [Google Scholar]
  12. Gaugué I., Oberto J., Plumbridge J.. ( 2014;). Regulation of amino sugar utilization in Bacillus subtilis by the GntR family regulators, NagR and GamR. . Mol Microbiol 92:, 100–115. [CrossRef][PubMed]
    [Google Scholar]
  13. Gilmore S. A., Naseem S., Konopka J. B., Sil A.. ( 2013;). N-Acetylglucosamine (GlcNAc) triggers a rapid, temperature-responsive morphogenetic program in thermally dimorphic fungi. . PLoS Genet 9:, e1003799. [CrossRef][PubMed]
    [Google Scholar]
  14. Han S., Song P., Ren T., Huang X., Cao C., Zhang B. C.. ( 2011;). Identification of SACE_7040, a member of TetR family related to the morphological differentiation of Saccharopolyspora erythraea. . Curr Microbiol 63:, 121–125. [CrossRef][PubMed]
    [Google Scholar]
  15. Heggset E. B., Hoell I. A., Kristoffersen M., Eijsink V. G., Vårum K. M.. ( 2009;). Degradation of chitosans with chitinase G from Streptomyces coelicolor A3(2): production of chito-oligosaccharides and insight into subsite specificities. . Biomacromolecules 10:, 892–899. [CrossRef][PubMed]
    [Google Scholar]
  16. Hiard S., Marée R., Colson S., Hoskisson P. A., Titgemeyer F., van Wezel G. P., Joris B., Wehenkel L., Rigali S.. ( 2007;). PREDetector: a new tool to identify regulatory elements in bacterial genomes. . Biochem Biophys Res Commun 357:, 861–864. [CrossRef][PubMed]
    [Google Scholar]
  17. Hodgson D. A.. ( 2000;). Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. . Adv Microb Physiol 42:, 47–238. [CrossRef][PubMed]
    [Google Scholar]
  18. Hoskisson P. A., Rigali S.. ( 2009;). Chapter 1: Variation in form and function the helix-turn-helix regulators of the GntR superfamily. . Adv Appl Microbiol 69:, 1–22. [CrossRef][PubMed]
    [Google Scholar]
  19. Hsu S. C., Lockwood J. L.. ( 1975;). Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. . Appl Microbiol 29:, 422–426.[PubMed]
    [Google Scholar]
  20. Huang L., Shizume A., Nogawa M., Taguchi G., Shimosaka M.. ( 2012;). Heterologous expression and functional characterization of a novel chitinase from the chitinolytic bacterium Chitiniphilus shinanonensis. . Biosci Biotechnol Biochem 76:, 517–522. [CrossRef][PubMed]
    [Google Scholar]
  21. Itoh Y., Kawase T., Nikaidou N., Fukada H., Mitsutomi M., Watanabe T., Itoh Y.. ( 2002;). Functional analysis of the chitin-binding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function. . Biosci Biotechnol Biochem 66:, 1084–1092. [CrossRef][PubMed]
    [Google Scholar]
  22. Itoh Y., Takahashi K., Takizawa H., Nikaidou N., Tanaka H., Nishihashi H., Watanabe T., Nishizawa Y.. ( 2003;). Family 19 chitinase of Streptomyces griseus HUT6037 increases plant resistance to the fungal disease. . Biosci Biotechnol Biochem 67:, 847–855. [CrossRef][PubMed]
    [Google Scholar]
  23. Jeuniaux C.. ( 1955;). Streptomyces production of exochitinase. . C R Seances Soc Biol Fil 149:, 1307–1308.[PubMed]
    [Google Scholar]
  24. Karlsson M., Stenlid J.. ( 2009;). Evolution of family 18 glycoside hydrolases: diversity, domain structures and phylogenetic relationships. . J Mol Microbiol Biotechnol 16:, 208–223. [CrossRef][PubMed]
    [Google Scholar]
  25. Kawase T., Yokokawa S., Saito A., Fujii T., Nikaidou N., Miyashita K., Watanabe T.. ( 2006;). Comparison of enzymatic and antifungal properties between family 18 and 19 chitinases from S. coelicolor A3(2). . Biosci Biotechnol Biochem 70:, 988–998. [CrossRef][PubMed]
    [Google Scholar]
  26. Khanna M., Solanki R., Lal R.. ( 2011;). Selective isolation of rare actinomycetes producing novel actinomycetes producing novel antimicrobial compounds. . Int J Adv Biotechnol Research 2:, 357–375.
    [Google Scholar]
  27. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. ( 2000;). Practical Streptomyces Genetics. Nowich:: John Innes Foundation;.
    [Google Scholar]
  28. Konopka J. B.. ( 2012;). N-Acetylglucosamine (GlcNAc) Functions in Cell Signaling. Cairo:: Scientifica;.
    [Google Scholar]
  29. Li Y. Y., Chang X., Yu W. B., Li H., Ye Z. Q., Yu H., Liu B. H., Zhang Y., Zhang S. L.. & other authors ( 2013;). Systems perspectives on erythromycin biosynthesis by comparative genomic and transcriptomic analyses of S. erythraea E3 and NRRL23338 strains. . BMC Genomics 14:, 523. [CrossRef][PubMed]
    [Google Scholar]
  30. Lingappa Y., Lockwood J. L.. ( 1961;). A chitin medium for isolation, growth and maintenance of actinomycetes. . Nature 189:, 158–159. [CrossRef][PubMed]
    [Google Scholar]
  31. Marcellin E., Licona-Cassani C., Mercer T. R., Palfreyman R. W., Nielsen L. K.. ( 2013;). Re-annotation of the Saccharopolyspora erythraea genome using a systems biology approach. . BMC Genomics 14:, 699. [CrossRef][PubMed]
    [Google Scholar]
  32. Mark B. L., Wasney G. A., Salo T. J., Khan A. R., Cao Z., Robbins P. W., James M. N., Triggs-Raine B. L.. ( 1998;). Structural and functional characterization of Streptomyces plicatus beta-N-acetylhexosaminidase by comparative molecular modeling and site-directed mutagenesis. . J Biol Chem 273:, 19618–19624. [CrossRef][PubMed]
    [Google Scholar]
  33. Masoudi-Nejad A., Goto S., Endo T. R., Kanehisa M.. ( 2007;). KEGG bioinformatics resource for plant genomics research. . Methods Mol Biol 406:, 437–458.[PubMed]
    [Google Scholar]
  34. Mertz F. P., Yao R. C.. ( 1990;). Saccharopolyspora spinosa sp. nov., isolated from soil collected in a sugar mill rum still. . Int J Syst Bacteriol 40:, 34–39. [CrossRef]
    [Google Scholar]
  35. Morimoto K., Karita S., Kimura T., Sakka K., Ohmiya K.. ( 1997;). Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain. . J Bacteriol 179:, 7306–7314.[PubMed]
    [Google Scholar]
  36. Mount D. W.. ( 2007;). Using the Basic Local Alignment Search Tool (BLAST). . CSH Protoc 2007:, pdb.top17.[PubMed]
    [Google Scholar]
  37. Murthy N. K. S., Bleakley B. H.. ( 2012;). Simplified method of preparing colloidal chitin used for screening of chitinase-producing microorganisms. . Int J Microbiol 10:, 7.
    [Google Scholar]
  38. Naseem S., Gunasekera A., Araya E., Konopka J. B.. ( 2011;). N-Acetylglucosamine (GlcNAc) induction of hyphal morphogenesis and transcriptional responses in Candida albicans are not dependent on its metabolism. . J Biol Chem 286:, 28671–28680. [CrossRef][PubMed]
    [Google Scholar]
  39. Naseem S., Parrino S. M., Buenten D. M., Konopka J. B.. ( 2012;). Novel roles for GlcNAc in cell signaling. . Commun Integr Biol 5:, 156–159. [CrossRef][PubMed]
    [Google Scholar]
  40. Nazari B., Saito A., Kobayashi M., Miyashita K., Wang Y., Fujii T.. ( 2011;). High expression levels of chitinase genes in Streptomyces coelicolor A3(2) grown in soil. . FEMS Microbiol Ecol 77:, 623–635. [CrossRef][PubMed]
    [Google Scholar]
  41. Nazari B., Kobayashi M., Saito A., Hassaninasab A., Miyashita K., Fujii T.. ( 2013;). Chitin-induced gene expression in secondary metabolic pathways of Streptomyces coelicolor A3(2) grown in soil. . Appl Environ Microbiol 79:, 707–713. [CrossRef][PubMed]
    [Google Scholar]
  42. Nothaft H., Dresel D., Willimek A., Mahr K., Niederweis M., Titgemeyer F.. ( 2003;). The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism. . J Bacteriol 185:, 7019–7023. [CrossRef][PubMed]
    [Google Scholar]
  43. Nothaft H., Rigali S., Boomsma B., Swiatek M., McDowall K. J., van Wezel G. P., Titgemeyer F.. ( 2010;). The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. . Mol Microbiol 75:, 1133–1144. [CrossRef][PubMed]
    [Google Scholar]
  44. Ohno T., Armand S., Hata T., Nikaidou N., Henrissat B., Mitsutomi M., Watanabe T.. ( 1996;). A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. . J Bacteriol 178:, 5065–5070.[PubMed]
    [Google Scholar]
  45. Resch M., Roth H. M., Kottmair M., Sevvana M., Bertram R., Titgemeyer F., Muller Y. A.. ( 2009;). Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of YvoA from Bacillus subtilis. . Acta Crystallogr Sect F Struct Biol Cryst Commun 65:, 410–414. [CrossRef][PubMed]
    [Google Scholar]
  46. Resch M., Schiltz E., Titgemeyer F., Muller Y. A.. ( 2010;). Insight into the induction mechanism of the GntR/HutC bacterial transcription regulator YvoA. . Nucleic Acids Res 38:, 2485–2497. [CrossRef][PubMed]
    [Google Scholar]
  47. Rigali S., Derouaux A., Giannotta F., Dusart J.. ( 2002;). Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. . J Biol Chem 277:, 12507–12515. [CrossRef][PubMed]
    [Google Scholar]
  48. Rigali S., Schlicht M., Hoskisson P., Nothaft H., Merzbacher M., Joris B., Titgemeyer F.. ( 2004;). Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships. . Nucleic Acids Res 32:, 3418–3426. [CrossRef][PubMed]
    [Google Scholar]
  49. Rigali S., Nothaft H., Noens E. E., Schlicht M., Colson S., Müller M., Joris B., Koerten H. K., Hopwood D. A.. & other authors ( 2006;). The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. . Mol Microbiol 61:, 1237–1251. [CrossRef][PubMed]
    [Google Scholar]
  50. Rigali S., Titgemeyer F., Barends S., Mulder S., Thomae A. W., Hopwood D. A., van Wezel G. P.. ( 2008;). Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. . EMBO Rep 9:, 670–675. [CrossRef][PubMed]
    [Google Scholar]
  51. Saito A., Fujii T., Miyashita K.. ( 2003;). Distribution and evolution of chitinase genes in Streptomyces species: involvement of gene-duplication and domain-deletion. . Antonie van Leeuwenhoek 84:, 7–15. [CrossRef][PubMed]
    [Google Scholar]
  52. Saito A., Shinya T., Miyamoto K., Yokoyama T., Kaku H., Minami E., Shibuya N., Tsujibo H., Nagata Y.. & other authors ( 2007;). The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N,N′-diacetylchitobiose in Streptomyces coelicolor A3(2). . Appl Environ Microbiol 73:, 3000–3008. [CrossRef][PubMed]
    [Google Scholar]
  53. Saito A., Fujii T., Shinya T., Shibuya N., Ando A., Miyashita K.. ( 2008;). The msiK gene, encoding the ATP-hydrolysing component of N,N′-diacetylchitobiose ABC transporters, is essential for induction of chitinase production in Streptomyces coelicolor A3(2). . Microbiology 154:, 3358–3365. [CrossRef][PubMed]
    [Google Scholar]
  54. Saito A., Ebise H., Orihara Y., Murakami S., Sano Y., Kimura A., Sugiyama Y., Ando A., Fujii T., Miyashita K.. ( 2013;). Enzymatic and genetic characterization of the DasD protein possessing N-acetyl-β-d-glucosaminidase activity in Streptomyces coelicolor A3(2). . FEMS Microbiol Lett 340:, 33–40. [CrossRef][PubMed]
    [Google Scholar]
  55. Sampei Z., Nagao Y., Fukazawa T., Fukagawa S., Matsuo T., Endo K., Yatsunami R., Nakamura S.. ( 2004;). Gene cloning and deletion analysis of chitinase J from alkaliphilic Bacillus sp. strain J813. . Nucleic Acids Symp Ser (Oxf) 48:, 167–168. [CrossRef][PubMed]
    [Google Scholar]
  56. Schnellmann J., Zeltins A., Blaak H., Schrempf H.. ( 1994;). The novel lectin-like protein CHB1 is encoded by a chitin-inducible Streptomyces olivaceoviridis gene and binds specifically to crystalline alpha-chitin of fungi and other organisms. . Mol Microbiol 13:, 807–819. [CrossRef][PubMed]
    [Google Scholar]
  57. Schrempf H.. ( 1999;). Characteristics of chitin-binding proteins from streptomycetes. . EXS 87:, 99–108.[PubMed]
    [Google Scholar]
  58. Seo J. W., Ohnishi Y., Hirata A., Horinouchi S.. ( 2002;). ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. . J Bacteriol 184:, 91–103. [CrossRef][PubMed]
    [Google Scholar]
  59. Sohanpal B. K., El-Labany S., Lahooti M., Plumbridge J. A., Blomfield I. C.. ( 2004;). Integrated regulatory responses of fimB to N-acetylneuraminic (sialic) acid and GlcNAc in Escherichia coli K-12.. Proc Natl Acad Sci U S A 101:, 16322–16327. [CrossRef][PubMed]
    [Google Scholar]
  60. Świątek M. A., Tenconi E., Rigali S., van Wezel G. P.. ( 2012a;). Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. . J Bacteriol 194:, 1136–1144. [CrossRef][PubMed]
    [Google Scholar]
  61. Świątek M. A., Urem M., Tenconi E., Rigali S., van Wezel G. P.. ( 2012b;). Engineering of N-acetylglucosamine metabolism for improved antibiotic production in Streptomyces coelicolor A3(2) and an unsuspected role of NagA in glucosamine metabolism. . Bioengineered 3:, 280–285. [CrossRef][PubMed]
    [Google Scholar]
  62. Synstad B., Gåseidnes S., Van Aalten D. M. F., Vriend G., Nielsen J. E., Eijsink V. G. H.. ( 2004;). Mutational and computational analysis of the role of conserved residues in the active site of a family 18 chitinase. . Eur J Biochem 271:, 253–262. [CrossRef][PubMed]
    [Google Scholar]
  63. Tjoelker L. W., Gosting L., Frey S., Hunter C. L., Trong H. L., Steiner B., Brammer H., Gray P. W.. ( 2000;). Structural and functional definition of the human chitinase chitin-binding domain. . J Biol Chem 275:, 514–520. [CrossRef][PubMed]
    [Google Scholar]
  64. Tsujibo H., Hatano N., Mikami T., Hirasawa A., Miyamoto K., Inamori Y.. ( 1998;). A novel beta-N-acetylglucosaminidase from Streptomyces thermoviolaceus OPC-520: gene cloning, expression, and assignment to family 3 of the glycosyl hydrolases. . Appl Environ Microbiol 64:, 2920–2924.[PubMed]
    [Google Scholar]
  65. Tsujibo H., Orikoshi H., Baba N., Miyahara M., Miyamoto K., Yasuda M., Inamori Y.. ( 2002;). Identification and characterization of the gene cluster involved in chitin degradation in a marine bacterium, Alteromonas sp. strain O-7. . Appl Environ Microbiol 68:, 263–270. [CrossRef][PubMed]
    [Google Scholar]
  66. Watanabe T., Suzuki K., Oyanagi W., Ohnishi K., Tanaka H.. ( 1990;). Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin. . J Biol Chem 265:, 15659–15665.[PubMed]
    [Google Scholar]
  67. Waterhouse R. M., Tegenfeldt F., Li J., Zdobnov E. M., Kriventseva E. V.. ( 2013;). OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. . Nucleic Acids Res 41: (Database issue), D358–D365. [CrossRef][PubMed]
    [Google Scholar]
  68. Whiteside M. D., Winsor G. L., Laird M. R., Brinkman F. S.. ( 2013;). OrtholugeDB: a bacterial and archaeal orthology resource for improved comparative genomic analysis. . Nucleic Acids Res 41: (Database issue), D366–D376. [CrossRef][PubMed]
    [Google Scholar]
  69. Xiao X., Wang F., Saito A., Majka J., Schlösser A., Schrempf H.. ( 2002;). The novel Streptomyces olivaceoviridis ABC transporter Ngc mediates uptake of N-acetylglucosamine and N,N′-diacetylchitobiose. . Mol Genet Genomics 267:, 429–439. [CrossRef][PubMed]
    [Google Scholar]
  70. Yang S. S., Lee M. H., Tzeng D. D. S.. ( 2005;). Cloning of full length sequence of a family 19 chitinase gene ChiF from Streptomyces griseobrunneus S3 and the molecular characterization of the recombinant protein. . Plant Pathol Bull 14:, 133–146.
    [Google Scholar]
  71. Yang C., Rodionov D. A., Li X., Laikova O. N., Gelfand M. S., Zagnitko O. P., Romine M. F., Obraztsova A. Y., Nealson K. H., Osterman A. L.. ( 2006;). Comparative genomics and experimental characterization of N-acetylglucosamine utilization pathway of Shewanella oneidensis. . J Biol Chem 281:, 29872–29885. [CrossRef][PubMed]
    [Google Scholar]
  72. Yao L. L., Liao C. H., Huang G., Zhou Y., Rigali S., Zhang B. C., Ye B. C.. ( 2014;). GlnR-mediated regulation of nitrogen metabolism in the actinomycete Saccharopolyspora erythraea. . Appl Microbiol Biotecwhnol. DOI: 10.1007/s00253-014-5878-1. [CrossRef][PubMed]
    [Google Scholar]
  73. Zeltins A., Schrempf H.. ( 1995;). Visualization of alpha-chitin with a specific chitin-binding protein (CHB1) from Streptomyces olivaceoviridis. . Anal Biochem 231:, 287–294. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078261-0
Loading
/content/journal/micro/10.1099/mic.0.078261-0
Loading

Data & Media loading...

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error