1887

Abstract

Micro-organisms sense the availability of nutrients in their environment to control cellular behaviour and the expression of transporters and enzymes that are required for the utilization of these nutrients. In the pathogenic yeast , the preferred nitrogen source ammonium suppresses the switch from yeast to filamentous growth in response to certain stimuli, and it also represses the secretion of proteases, which are required for the utilization of proteins as an alternative nitrogen source. To investigate whether senses the availability of ammonium in the extracellular environment or if ammonium uptake into the cell is required to regulate morphogenesis and gene expression, we compared the behaviour of wild-type cells and ammonium uptake-deficient mutants in the presence and absence of extracellular ammonium. Arginine-induced filamentous growth was suppressed by ammonium in the wild-type, but not in mutants lacking the ammonium permeases Mep1 and Mep2. Similarly, ammonium suppressed protease secretion and extracellular protein degradation in the wild-type, but not in mutants lacking the ammonium transporters. By comparing the gene expression profiles of grown in the presence of low or high ammonium concentrations, we identified a set of genes whose expression is controlled by nitrogen availability. The repression of genes involved in the utilization of alternative nitrogen sources, which occurred under ammonium-replete conditions in the wild-type, was abrogated in Δ Δ mutants. These results demonstrate that does not respond to the presence of sufficient amounts of the preferred nitrogen source ammonium by sensing its availability in the environment. Instead, ammonium has to be taken up into the cell to control morphogenesis, protease secretion and gene expression.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078238-0
2014-08-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1599.html?itemId=/content/journal/micro/10.1099/mic.0.078238-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. ( 1989;). Current Protocols in Molecular Biology. New York:: Wiley;.
    [Google Scholar]
  2. Biswas K., Morschhäuser J.. ( 2005;). The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. . Mol Microbiol 56:, 649–669. [CrossRef][PubMed]
    [Google Scholar]
  3. Boeckstaens M., André B., Marini A. M.. ( 2007;). The yeast ammonium transport protein Mep2 and its positive regulator, the Npr1 kinase, play an important role in normal and pseudohyphal growth on various nitrogen media through retrieval of excreted ammonium. . Mol Microbiol 64:, 534–546. [CrossRef][PubMed]
    [Google Scholar]
  4. Dabas N., Morschhäuser J.. ( 2007;). Control of ammonium permease expression and filamentous growth by the GATA transcription factors GLN3 and GAT1 in Candida albicans. . Eukaryot Cell 6:, 875–888. [CrossRef][PubMed]
    [Google Scholar]
  5. Dabas N., Morschhäuser J.. ( 2008;). A transcription factor regulatory cascade controls secreted aspartic protease expression in Candida albicans. . Mol Microbiol 69:, 586–602. [CrossRef][PubMed]
    [Google Scholar]
  6. Didion T., Regenberg B., Jørgensen M. U., Kielland-Brandt M. C., Andersen H. A.. ( 1998;). The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. . Mol Microbiol 27:, 643–650. [CrossRef][PubMed]
    [Google Scholar]
  7. Donaton M. C., Holsbeeks I., Lagatie O., Van Zeebroeck G., Crauwels M., Winderickx J., Thevelein J. M.. ( 2003;). The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. . Mol Microbiol 50:, 911–929. [CrossRef][PubMed]
    [Google Scholar]
  8. Fellenberg K., Hauser N. C., Brors B., Hoheisel J. D., Vingron M.. ( 2002;). Microarray data warehouse allowing for inclusion of experiment annotations in statistical analysis. . Bioinformatics 18:, 423–433. [CrossRef][PubMed]
    [Google Scholar]
  9. Feller A., Boeckstaens M., Marini A. M., Dubois E.. ( 2006;). Transduction of the nitrogen signal activating Gln3-mediated transcription is independent of Npr1 kinase and Rsp5-Bul1/2 ubiquitin ligase in Saccharomyces cerevisiae. . J Biol Chem 281:, 28546–28554. [CrossRef][PubMed]
    [Google Scholar]
  10. Fonzi W. A., Irwin M. Y.. ( 1993;). Isogenic strain construction and gene mapping in Candida albicans. . Genetics 134:, 717–728.[PubMed]
    [Google Scholar]
  11. Gillum A. M., Tsay E. Y., Kirsch D. R.. ( 1984;). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. . Mol Gen Genet 198:, 179–182. [CrossRef][PubMed]
    [Google Scholar]
  12. Giots F., Donaton M. C., Thevelein J. M.. ( 2003;). Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase A pathway in the yeast Saccharomyces cerevisiae. . Mol Microbiol 47:, 1163–1181. [CrossRef][PubMed]
    [Google Scholar]
  13. Grenson M., Dubois E.. ( 1982;). Pleiotropic deficiency in nitrogen-uptake systems and derepression of nitrogen-catabolic enzymes in npr-1 mutants of Saccharomyces cerevisiae. . Eur J Biochem 121:, 643–647. [CrossRef][PubMed]
    [Google Scholar]
  14. Holmes A. R., McNaughton G. S., More R. D., Shepherd M. G.. ( 1991;). Ammonium assimilation by Candida albicans and other yeasts: a 13N isotope study. . Can J Microbiol 37:, 226–232. [CrossRef][PubMed]
    [Google Scholar]
  15. Holsbeeks I., Lagatie O., Van Nuland A., Van de Velde S., Thevelein J. M.. ( 2004;). The eukaryotic plasma membrane as a nutrient-sensing device. . Trends Biochem Sci 29:, 556–564. [CrossRef][PubMed]
    [Google Scholar]
  16. Hube B., Monod M., Schofield D. A., Brown A. J., Gow N. A.. ( 1994;). Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. . Mol Microbiol 14:, 87–99. [CrossRef][PubMed]
    [Google Scholar]
  17. Iraqui I., Vissers S., Bernard F., de Craene J. O., Boles E., Urrestarazu A., André B.. ( 1999;). Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. . Mol Cell Biol 19:, 989–1001.[PubMed]
    [Google Scholar]
  18. Klasson H., Fink G. R., Ljungdahl P. O.. ( 1999;). Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. . Mol Cell Biol 19:, 5405–5416.[PubMed]
    [Google Scholar]
  19. Köhler G. A., White T. C., Agabian N.. ( 1997;). Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. . J Bacteriol 179:, 2331–2338.[PubMed]
    [Google Scholar]
  20. Lemaire K., Van de Velde S., Van Dijck P., Thevelein J. M.. ( 2004;). Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. . Mol Cell 16:, 293–299. [CrossRef][PubMed]
    [Google Scholar]
  21. Ljungdahl P. O., Daignan-Fornier B.. ( 2012;). Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. . Genetics 190:, 885–929. [CrossRef][PubMed]
    [Google Scholar]
  22. Lorenz M. C., Heitman J.. ( 1998;). The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. . EMBO J 17:, 1236–1247. [CrossRef][PubMed]
    [Google Scholar]
  23. Martínez P., Ljungdahl P. O.. ( 2005;). Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control. . Mol Cell Biol 25:, 9435–9446. [CrossRef][PubMed]
    [Google Scholar]
  24. Naglik J. R., Challacombe S. J., Hube B.. ( 2003;). Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. . Microbiol Mol Biol Rev 67:, 400–428. [CrossRef][PubMed]
    [Google Scholar]
  25. Neuhäuser B., Dunkel N., Satheesh S. V., Morschhäuser J.. ( 2011;). Role of the Npr1 kinase in ammonium transport and signaling by the ammonium permease Mep2 in Candida albicans. . Eukaryot Cell 10:, 332–342. [CrossRef][PubMed]
    [Google Scholar]
  26. Özcan S., Dover J., Rosenwald A. G., Wölfl S., Johnston M.. ( 1996;). Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. . Proc Natl Acad Sci U S A 93:, 12428–12432. [CrossRef][PubMed]
    [Google Scholar]
  27. Reuß O., Morschhäuser J.. ( 2006;). A family of oligopeptide transporters is required for growth of Candida albicans on proteins. . Mol Microbiol 60:, 795–812. [CrossRef][PubMed]
    [Google Scholar]
  28. Reuß O., Vik Å., Kolter R., Morschhäuser J.. ( 2004;). The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. . Gene 341:, 119–127. [CrossRef][PubMed]
    [Google Scholar]
  29. Rubio-Texeira M., Van Zeebroeck G., Voordeckers K., Thevelein J. M.. ( 2010;). Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. . FEMS Yeast Res 10:, 134–149. [CrossRef][PubMed]
    [Google Scholar]
  30. Rutherford J. C., Chua G., Hughes T., Cardenas M. E., Heitman J.. ( 2008;). A Mep2-dependent transcriptional profile links permease function to gene expression during pseudohyphal growth in Saccharomyces cerevisiae. . Mol Biol Cell 19:, 3028–3039. [CrossRef][PubMed]
    [Google Scholar]
  31. Sohn K., Senyürek I., Fertey J., Königsdorfer A., Joffroy C., Hauser N., Zelt G., Brunner H., Rupp S.. ( 2006;). An in vitro assay to study the transcriptional response during adherence of Candida albicans to different human epithelia. . FEMS Yeast Res 6:, 1085–1093. [CrossRef][PubMed]
    [Google Scholar]
  32. Tate J. J., Rai R., Cooper T. G.. ( 2006;). Ammonia-specific regulation of Gln3 localization in Saccharomyces cerevisiae by protein kinase Npr1. . J Biol Chem 281:, 28460–28469. [CrossRef][PubMed]
    [Google Scholar]
  33. Zaman S., Lippman S. I., Zhao X., Broach J. R.. ( 2008;). How Saccharomyces responds to nutrients. . Annu Rev Genet 42:, 27–81. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078238-0
Loading
/content/journal/micro/10.1099/mic.0.078238-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error