Editor's Choice injects NDK into host cells through a type III secretion system Free

Abstract

is a Gram-negative opportunistic human pathogen possessing a type III secretion system (T3SS) which injects toxic effector proteins into mammalian host cells. In previous studies, strains lacking all of the known type III effectors were shown to cause cytotoxicity upon prolonged infection time. In this study, we report the identification of a new cytotoxin, nucleoside diphosphate kinase (NDK), which is injected into eukaryotic cells in a T3SS-dependent manner. Injection of NDK is inhibited by the presence of previously known effectors of the T3SS, with an effectorless strain injecting the highest amount, suggesting active competition with the known T3SS effectors. NDK is shown to cause a cytotoxic response when expressed in eukaryotic cells, and strains harbouring NDK also show a greater toxicity than strains lacking it. Interestingly, the cytotoxic effect of intracellular NDK is independent of its kinase activity. In previous studies, NDK was shown to be secreted into culture supernatants via a type I secretion system and cause cytotoxicity in a kinase-dependent manner. Therefore, the current study highlights an alternative route of NDK secretion as well as two different cytotoxic mechanisms of NDK, depending on the extra- or intra-cellular location of the protein.

Funding
This study was supported by the:
  • National Institutes of Health (Award RC1GM091238)
  • Florida Department of Health Biomedical Research Programs (Award 3KB04)
  • National Science Foundation of China (Award 31170128)
  • National Basic Research Program of China (Award 973 Program, 2012CB518700)
  • Basic Science Research Program (Award 2010-0009047)
  • the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078139-0
2014-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1417.html?itemId=/content/journal/micro/10.1099/mic.0.078139-0&mimeType=html&fmt=ahah

References

  1. Akopyan K., Edgren T., Wang-Edgren H., Rosqvist R., Fahlgren A., Wolf-Watz H., Fallman M. ( 2011). Translocation of surface-localized effectors in type III secretion. Proc Natl Acad Sci U S A 108:1639–1644 [View Article][PubMed]
    [Google Scholar]
  2. Ambrosi C., Tiburzi F., Imperi F., Putignani L., Visca P. ( 2005). Involvement of AlgQ in transcriptional regulation of pyoverdine genes in Pseudomonas aeruginosa PAO1. J Bacteriol 187:5097–5107 [View Article][PubMed]
    [Google Scholar]
  3. Barbieri J. T., Sun J. ( 2004). Pseudomonas aeruginosa ExoS and ExoT. Rev Physiol Biochem Pharmacol 152:79–92 [View Article][PubMed]
    [Google Scholar]
  4. Bichsel C., Neeld D. K., Hamazaki T., Wu D., Chang L. J., Yang L., Terada N., Jin S. ( 2011). Bacterial delivery of nuclear proteins into pluripotent and differentiated cells. PLoS ONE 6:e16465 [View Article][PubMed]
    [Google Scholar]
  5. Bichsel C., Neeld D., Hamazaki T., Chang L., Yang L., Terada N., Jin S. ( 2013). Trans-differentiation of fibroblasts to myocytes via bacterial injection of MyoD protein. Cell Reprogram 15:117–125[PubMed]
    [Google Scholar]
  6. Chakrabarty A. M. ( 1998). Nucleoside diphosphate kinase: role in bacterial growth, virulence, cell signalling and polysaccharide synthesis. Mol Microbiol 28:875–882 [View Article][PubMed]
    [Google Scholar]
  7. Chopra P., Singh A., Koul A., Ramachandran S., Drlica K., Tyagi A. K., Singh Y. ( 2003). Cytotoxic activity of nucleoside diphosphate kinase secreted from Mycobacterium tuberculosis. Eur J Biochem 270:625–634 [View Article][PubMed]
    [Google Scholar]
  8. Chopra P., Koduri H., Singh R., Koul A., Ghildiyal M., Sharma K., Tyagi A. K., Singh Y. ( 2004). Nucleoside diphosphate kinase of Mycobacterium tuberculosis acts as GTPase-activating protein for Rho-GTPases. FEBS Lett 571:212–216 [View Article][PubMed]
    [Google Scholar]
  9. Coburn B., Sekirov I., Finlay B. B. ( 2007). Type III secretion systems and disease. Clin Microbiol Rev 20:535–549 [View Article][PubMed]
    [Google Scholar]
  10. Cornelis G. R., Van Gijsegem F. ( 2000). Assembly and function of type III secretory systems. Annu Rev Microbiol 54:735–774 [View Article][PubMed]
    [Google Scholar]
  11. Engel J., Balachandran P. ( 2009). Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 12:61–66 [View Article][PubMed]
    [Google Scholar]
  12. Feltman H., Schulert G., Khan S., Jain M., Peterson L., Hauser A. R. ( 2001). Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 147:2659–2669[PubMed]
    [Google Scholar]
  13. Galán J. E., Collmer A. ( 1999). Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322–1328 [View Article][PubMed]
    [Google Scholar]
  14. Galle M., Jin S., Bogaert P., Haegman M., Vandenabeele P., Beyaert R. ( 2012). The Pseudomonas aeruginosa type III secretion system has an exotoxin S/T/Y independent pathogenic role during acute lung infection. PLoS ONE 7:e41547 [View Article][PubMed]
    [Google Scholar]
  15. Ha U., Jin S. ( 2001). Growth phase-dependent invasion of Pseudomonas aeruginosa and its survival within HeLa cells. Infect Immun 69:4398–4406 [View Article][PubMed]
    [Google Scholar]
  16. Hauser A. R. ( 2009). The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665 [View Article][PubMed]
    [Google Scholar]
  17. Hayes C. S., Aoki S. K., Low D. A. ( 2010). Bacterial contact-dependent delivery systems. Annu Rev Genet 44:71–90 [View Article][PubMed]
    [Google Scholar]
  18. Jia J., Wang Y., Zhou L., Jin S. ( 2006). Expression of Pseudomonas aeruginosa toxin ExoS effectively induces apoptosis in host cells. Infect Immun 74:6557–6570 [View Article][PubMed]
    [Google Scholar]
  19. Kamath S., Kapatral V., Chakrabarty A. M. ( 1998). Cellular function of elastase in Pseudomonas aeruginosa: role in the cleavage of nucleoside diphosphate kinase and in alginate synthesis. Mol Microbiol 30:933–941 [View Article][PubMed]
    [Google Scholar]
  20. Kamath S., Chen M. L., Chakrabarty A. M. ( 2000). Secretion of nucleoside diphosphate kinase by mucoid Pseudomonas aeruginosa 8821: involvement of a carboxy-terminal motif in secretion. J Bacteriol 182:3826–3831 [View Article][PubMed]
    [Google Scholar]
  21. Lee V. T., Smith R. S., Tümmler B., Lory S. ( 2005). Activities of Pseudomonas aeruginosa effectors secreted by the Type III secretion system in vitro and during infection. Infect Immun 73:1695–1705 [View Article][PubMed]
    [Google Scholar]
  22. Lyczak J. B., Cannon C. L., Pier G. B. ( 2000). Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060 [View Article][PubMed]
    [Google Scholar]
  23. Spooner R., Yilmaz Ö. ( 2012). Nucleoside-diphosphate-kinase: a pleiotropic effector in microbial colonization under interdisciplinary characterization. Microbes Infect 14:228–237 [View Article][PubMed]
    [Google Scholar]
  24. Sun J., Wang X., Lau A., Liao T. Y., Bucci C., Hmama Z. ( 2010). Mycobacterial nucleoside diphosphate kinase blocks phagosome maturation in murine RAW 264.7 macrophages. PLoS ONE 5:e8769 [View Article][PubMed]
    [Google Scholar]
  25. Sundin C., Thelaus J., Bröms J. E., Forsberg A. ( 2004). Polarisation of type III translocation by Pseudomonas aeruginosa requires PcrG, PcrV and PopN. Microb Pathog 37:313–322 [View Article][PubMed]
    [Google Scholar]
  26. Tiwari S., Kishan K. V., Chakrabarti T., Chakraborti P. K. ( 2004). Amino acid residues involved in autophosphorylation and phosphotransfer activities are distinct in nucleoside diphosphate kinase from Mycobacterium tuberculosis. J Biol Chem 279:43595–43603 [View Article][PubMed]
    [Google Scholar]
  27. Vance R. E., Rietsch A., Mekalanos J. J. ( 2005). Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo. Infect Immun 73:1706–1713 [View Article][PubMed]
    [Google Scholar]
  28. Vidal J. E., Navarro-García F. ( 2008). EspC translocation into epithelial cells by enteropathogenic Escherichia coli requires a concerted participation of type V and III secretion systems. Cell Microbiol 10:1975–1986 [View Article][PubMed]
    [Google Scholar]
  29. West S. E., Schweizer H. P., Dall C., Sample A. K., Runyen-Janecky L. J. ( 1994). Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148:81–86 [View Article][PubMed]
    [Google Scholar]
  30. Yang H., Shan Z., Kim J., Wu W., Lian W., Zeng L., Xing L., Jin S. ( 2007). Regulatory role of PopN and its interacting partners in type III secretion of Pseudomonas aeruginosa. J Bacteriol 189:2599–2609 [View Article][PubMed]
    [Google Scholar]
  31. Zaborina O., Misra N., Kostal J., Kamath S., Kapatral V., El-Idrissi M. E., Prabhakar B. S., Chakrabarty A. M. ( 1999). P2Z-Independent and P2Z receptor-mediated macrophage killing by Pseudomonas aeruginosa isolated from cystic fibrosis patients. Infect Immun 67:5231–5242[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078139-0
Loading
/content/journal/micro/10.1099/mic.0.078139-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed