1887

Abstract

Protein turnover plays an important role in cell metabolism by regulating metabolic fluxes. Furthermore, the energy costs for protein turnover have been estimated to account for up to a third of the total energy production during cell replication and hence may represent a major limiting factor in achieving either higher biomass or production yields. This work aimed to measure the specific growth rate (μ)-dependent abundance and turnover rate of individual proteins, estimate the ATP cost for protein production and turnover, and compare this with the total energy balance and other maintenance costs. The lactic acid bacteria model organism was used to measure protein turnover rates at μ = 0.1 and 0.5 h in chemostat experiments. Individual turnover rates were measured for ~75 % of the total proteome. On average, protein turnover increased by sevenfold with a fivefold increase in growth rate, whilst biomass yield increased by 35 %. The median turnover rates found were higher than the specific growth rate of the bacterium, which suggests relatively high energy consumption for protein turnover. We found that protein turnover costs alone account for 38 and 47 % of the total energy produced at μ = 0.1 and 0.5 h, respectively, and gene ontology groups Energy metabolism and Translation dominated synthesis costs at both growth rates studied. These results reflect the complexity of metabolic changes that occur in response to changes in environmental conditions, and signify the trade-off between biomass yield and the need to produce ATP for maintenance processes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078089-0
2014-07-01
2020-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1501.html?itemId=/content/journal/micro/10.1099/mic.0.078089-0&mimeType=html&fmt=ahah

References

  1. Adamberg K., Seiman A., Vilu R..( 2012;). Increased biomass yield of Lactococcus lactis by reduced overconsumption of amino acids and increased catalytic activities of enzymes. PLoS ONE7:e48223 [CrossRef][PubMed]
    [Google Scholar]
  2. Arike L., Valgepea K., Peil L., Nahku R., Adamberg K., Vilu R..( 2012;). Comparison and applications of label-free absolute proteome quantification methods on Escherichia coli. J Proteomics75:5437–5448 [CrossRef][PubMed]
    [Google Scholar]
  3. Bahey-El-Din M..( 2012;). Lactococcus lactis-based vaccines from laboratory bench to human use: an overview. Vaccine30:685–690 [CrossRef][PubMed]
    [Google Scholar]
  4. Belle A., Tanay A., Bitincka L., Shamir R., O’Shea E. K..( 2006;). Quantification of protein half-lives in the budding yeast proteome. Proc Natl Acad Sci U S A103:13004–13009 [CrossRef][PubMed]
    [Google Scholar]
  5. Bermúdez-Humarán L. G., Kharrat P., Chatel J.-M., Langella P..( 2011;). Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb Cell Fact10:Suppl 1S4 [CrossRef][PubMed]
    [Google Scholar]
  6. Bermúdez-Humarán L. G., Aubry C., Motta J.-P., Deraison C., Steidler L., Vergnolle N., Chatel J.-M., Langella P..( 2013;). Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol16:278–283 [CrossRef][PubMed]
    [Google Scholar]
  7. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A..( 2001;). The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res11:731–753 [CrossRef][PubMed]
    [Google Scholar]
  8. Buonaguro L., Wang E., Tornesello M. L., Buonaguro F. M., Marincola F. M..( 2011;). Systems biology applied to vaccine and immunotherapy development. BMC Syst Biol5:146 [CrossRef][PubMed]
    [Google Scholar]
  9. Burton R. E., Siddiqui S. M., Kim Y. I., Baker T. A., Sauer R. T..( 2001;). Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J20:3092–3100 [CrossRef][PubMed]
    [Google Scholar]
  10. Canelas A. B., Harrison N., Fazio A., Zhang J., Pitkänen J.-P., van den Brink J., Bakker B. M., Bogner L., Bouwman J..& other authors ( 2010;). Integrated multilaboratory systems biology reveals differences in protein metabolism between two reference yeast strains. Nat Commun1:145 [CrossRef][PubMed]
    [Google Scholar]
  11. Cargile B. J., Bundy J. L., Grunden A. M., Stephenson J. L. Jr.( 2004;). Synthesis/degradation ratio mass spectrometry for measuring relative dynamic protein turnover. Anal Chem76:86–97 [CrossRef][PubMed]
    [Google Scholar]
  12. Cox J., Mann M..( 2008;). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol26:1367–1372 [CrossRef][PubMed]
    [Google Scholar]
  13. Dressaire C., Redon E., Milhem H., Besse P., Loubière P., Cocaign-Bousquet M..( 2008;). Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses. BMC Genomics9:343 [CrossRef][PubMed]
    [Google Scholar]
  14. Dressaire C., Picard F., Redon E., Loubière P., Queinnec I., Girbal L., Cocaign-Bousquet M..( 2013;). Role of mRNA stability during bacterial adaptation. PLoS ONE8:e59059 [CrossRef][PubMed]
    [Google Scholar]
  15. Gerth U., Kock H., Kusters I., Michalik S., Switzer R. L., Hecker M..( 2008;). Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis. J Bacteriol190:321–331 [CrossRef][PubMed]
    [Google Scholar]
  16. González-Ramos D., van den Broek M., van Maris A. J., Pronk J. T., Daran J.-M. G..( 2013;). Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol Biofuels6:48 [CrossRef][PubMed]
    [Google Scholar]
  17. Helbig A. O., Daran-Lapujade P., van Maris A. J., de Hulster E. A., de Ridder D., Pronk J. T., Heck A. J., Slijper M..( 2011;). The diversity of protein turnover and abundance under nitrogen-limited steady-state conditions in Saccharomyces cerevisiae. Mol Biosyst7:3316–3326 [CrossRef][PubMed]
    [Google Scholar]
  18. Hong K.-K., Hou J., Shoaie S., Nielsen J., Bordel S..( 2012;). Dynamic 13C-labeling experiments prove important differences in protein turnover rate between two Saccharomyces cerevisiae strains. FEMS Yeast Res12:741–747 [CrossRef][PubMed]
    [Google Scholar]
  19. Hughes C., Krijgsveld J..( 2012;). Developments in quantitative mass spectrometry for the analysis of proteome dynamics. Trends Biotechnol30:668–676 [CrossRef][PubMed]
    [Google Scholar]
  20. Karr J. R., Sanghvi J. C., Macklin D. N., Gutschow M. V., Jacobs J. M., Bolival B. Jr, Assad-Garcia N., Glass J. I., Covert M. W..( 2012;). A whole-cell computational model predicts phenotype from genotype. Cell150:389–401 [CrossRef][PubMed]
    [Google Scholar]
  21. Khmelinskii A., Keller P. J., Bartosik A., Meurer M., Barry J. D., Mardin B. R., Kaufmann A., Trautmann S., Wachsmuth M..& other authors ( 2012;). Tandem fluorescent protein timers for in vivo analysis of protein dynamics. Nat Biotechnol30:708–714 [CrossRef][PubMed]
    [Google Scholar]
  22. Lahtvee P.-J., Adamberg K., Arike L., Nahku R., Aller K., Vilu R..( 2011;). Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates. Microb Cell Fact10:12 [CrossRef][PubMed]
    [Google Scholar]
  23. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J..( 1951;). Protein measurement with the Folin phenol reagent. J Biol Chem193:265–275[PubMed]
    [Google Scholar]
  24. Maier T., Schmidt A., Güell M., Kühner S., Gavin A.-C., Aebersold R., Serrano L..( 2011;). Quantification of mRNA and protein and integration with protein turnover in a bacterium. Mol Syst Biol7:511 [CrossRef][PubMed]
    [Google Scholar]
  25. Martin S. F., Munagapati V. S., Salvo-Chirnside E., Kerr L. E., Le Bihan T..( 2012;). Proteome turnover in the green alga Ostreococcus tauri by time course 15N metabolic labeling mass spectrometry. J Proteome Res11:476–486 [CrossRef][PubMed]
    [Google Scholar]
  26. Mehmeti I., Faergestad E. M., Bekker M., Snipen L., Nes I. F., Holo H..( 2012;). Growth rate-dependent control in Enterococcus faecalis: effects on the transcriptome and proteome, and strong regulation of lactate dehydrogenase. Appl Environ Microbiol78:170–176 [CrossRef][PubMed]
    [Google Scholar]
  27. Menon A. S., Goldberg A. L..( 1987;). Binding of nucleotides to the ATP-dependent protease La from Escherichia coli. J Biol Chem262:14921–14928[PubMed]
    [Google Scholar]
  28. Neves A. R., Pool W. A., Kok J., Kuipers O. P., Santos H..( 2005;). Overview on sugar metabolism and its control in Lactococcus lactis – the input from in vivo NMR. FEMS Microbiol Rev29:531–554[PubMed]
    [Google Scholar]
  29. O’Sullivan E., Condon S..( 1999;). Relationship between acid tolerance, cytoplasmic pH, and ATP and H+-ATPase levels in chemostat cultures of Lactococcus lactis. Appl Environ Microbiol65:2287–2293[PubMed]
    [Google Scholar]
  30. Oh E., Lu M., Park C., Park C., Oh H. B., Lee S. Y., Lee J..( 2011;). Dynamic modeling of lactic acid fermentation metabolism with Lactococcus lactis. J Microbiol Biotechnol21:162–169 [CrossRef][PubMed]
    [Google Scholar]
  31. Ong S.-E., Blagoev B., Kratchmarova I., Kristensen D. B., Steen H., Pandey A., Mann M..( 2002;). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics1:376–386 [CrossRef][PubMed]
    [Google Scholar]
  32. Orij R., Urbanus M. L., Vizeacoumar F. J., Giaever G., Boone C., Nislow C., Brul S., Smits G. J..( 2012;). Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pHc in Saccharomyces cerevisiae. Genome Biol13:R80 [CrossRef][PubMed]
    [Google Scholar]
  33. Pirt S. J..( 1965;). The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci163:224–231 [CrossRef][PubMed]
    [Google Scholar]
  34. Pratt J. M., Petty J., Riba-Garcia I., Robertson D. H., Gaskell S. J., Oliver S. G., Beynon R. J..( 2002;). Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell Proteomics1:579–591 [CrossRef][PubMed]
    [Google Scholar]
  35. Rappsilber J., Mann M., Ishihama Y..( 2007;). Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc2:1896–1906 [CrossRef][PubMed]
    [Google Scholar]
  36. Russell J. B., Cook G. M..( 1995;). Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev59:48–62[PubMed]
    [Google Scholar]
  37. Schwanhäusser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M..( 2011;). Global quantification of mammalian gene expression control. Nature473:337–342 [CrossRef][PubMed]
    [Google Scholar]
  38. Schwanhäusser B., Wolf J., Selbach M., Busse D..( 2013;). Synthesis and degradation jointly determine the responsiveness of the cellular proteome. BioEssays35:597–601 [CrossRef][PubMed]
    [Google Scholar]
  39. Stephanopoulos G., Aristidou A. A., Nielsen J. H..( 1998;). Metabolic Engineering: Principles and Methodologies New York: Academic Press;
    [Google Scholar]
  40. Stouthamer A. H..( 1973;). A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek39:545–565 [CrossRef][PubMed]
    [Google Scholar]
  41. Taymaz-Nikerel H., Borujeni A. E., Verheijen P. J. T., Heijnen J. J., van Gulik W. M..( 2010;). Genome-derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry. Biotechnol Bioeng107:369–381 [CrossRef][PubMed]
    [Google Scholar]
  42. Thompson J..( 1978;). In vivo regulation of glycolysis and characterization of sugar: phosphotransferase systems in Streptococcus lactis . J Bacteriol136:465–476[PubMed]
    [Google Scholar]
  43. Trötschel C., Albaum S. P., Wolff D., Schröder S., Goesmann A., Nattkemper T. W., Poetsch A..( 2012;). Protein turnover quantification in a multilabeling approach: from data calculation to evaluation. Mol Cell Proteomics11:512–526 [CrossRef][PubMed]
    [Google Scholar]
  44. Trötschel C., Albaum S. P., Poetsch A..( 2013;). Proteome turnover in bacteria: current status for Corynebacterium glutamicum and related bacteria. Microb Biotechnol6:708–719 [CrossRef][PubMed]
    [Google Scholar]
  45. Valgepea K., Adamberg K., Seiman A., Vilu R..( 2013;). Escherichia coli achieves faster growth by increasing catalytic and translation rates of proteins. Mol Biosyst9:2344–2358 [CrossRef][PubMed]
    [Google Scholar]
  46. van Bodegom P..( 2007;). Microbial maintenance: a critical review on its quantification. Microb Ecol53:513–523 [CrossRef][PubMed]
    [Google Scholar]
  47. Vizcaíno J. A., Côté R. G., Csordas A., Dianes J. A., Fabregat A., Foster J. M., Griss J., Alpi E., Birim M..& other authors ( 2013;). The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res41:D1D1063–D1069 [CrossRef][PubMed]
    [Google Scholar]
  48. Wiśniewski J. R., Zougman A., Nagaraj N., Mann M..( 2009;). Universal sample preparation method for proteome analysis. Nat Methods6:359–362 [CrossRef][PubMed]
    [Google Scholar]
  49. Wiśniewski J. R., Ostasiewicz P., Duś K., Zielińska D. F., Gnad F., Mann M..( 2012;). Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma. Mol Syst Biol8:611 [CrossRef][PubMed]
    [Google Scholar]
  50. Wodke J. A., Puchałka J., Lluch-Senar M., Marcos J., Yus E., Godinho M., Gutiérrez-Gallego R., dos Santos V. A., Serrano L..& other authors ( 2013;). Dissecting the energy metabolism in Mycoplasma pneumoniae through genome-scale metabolic modeling. Mol Syst Biol9:653 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078089-0
Loading
/content/journal/micro/10.1099/mic.0.078089-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error