Mechanism for temperature-dependent production of piscicolin 126 Free

Abstract

Piscicolin 126 is a class 2a bacteriocin produced by strains UAL26 and JG126. Whilst strain UAL26 shows temperature-dependent piscicolin 126 production, strain JG126 produces bacteriocin at any growth temperature. Several clones containing combinations of the ATP-binding cassette transporter () and transporter accessory () genes from JG126 and UAL26 were created and tested for bacteriocin production. Bacteriocin production at 25 °C was observed only for a clone containing both and from JG126 (U-TE) and a clone containing from UAL26 and from JG126 (U-BamTE). Therefore, the deletion of a single CG base pair located on of UAL26 that results in a frameshift and truncation of PisE causes the temperature-dependent piscicolin 126 production. Bacteriocin production of UAL26 was induced at 25 °C by the addition of supernatant containing the autoinducer peptide (AIP); however, the antimicrobial activity was lost after two subsequent overnight cultivations due to the presumed lack of the AIP. Changes in membrane fluidity due to changes in temperature or the presence of 2-phenylethanol (PHE) affected bacteriocin production of UAL26, but not of clones U-TE or U-BamTE. Similarly, increased membrane fluidity due to PHE addition reduced production of sakacin A in Lb706 and LTH 1174. The mechanism involved in the temperature-dependent piscicolin 126 production was described. Due to the conformational change in PisE at 25 °C, the transport machinery was not able to translocate AIP. To the best of our knowledge, this is the first report that links membrane fluidity with the regulation of bacteriocin production.

Funding
This study was supported by the:
  • Natural Sciences and Engineering Research Council of Canada
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078030-0
2014-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1670.html?itemId=/content/journal/micro/10.1099/mic.0.078030-0&mimeType=html&fmt=ahah

References

  1. Axelsson L., Holck A. ( 1995). The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol 177:2125–2137[PubMed]
    [Google Scholar]
  2. Axelsson L., Katla T., Bjørnslett M., Eijsink V. G., Holck A. ( 1998). A system for heterologous expression of bacteriocins in Lactobacillus sake. FEMS Microbiol Lett 168:137–143 [View Article][PubMed]
    [Google Scholar]
  3. Biemans-Oldehinkel E., Doeven M. K., Poolman B. ( 2006). ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 580:1023–1035 [View Article][PubMed]
    [Google Scholar]
  4. Bogdanov M., Heacock P. N., Dowhan W. ( 2002). A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J 21:2107–2116 [View Article][PubMed]
    [Google Scholar]
  5. Cleveland J., Montville T. J., Nes I. F., Chikindas M. L. ( 2001). Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol 71:1–20 [View Article][PubMed]
    [Google Scholar]
  6. DeVuyst L., Callewaert R., Crabbe K. ( 1996). Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology 142:817–827 [View Article]
    [Google Scholar]
  7. Diep D. B., Axelsson L., Grefsli C., Nes I. F. ( 2000). The synthesis of the bacteriocin sakacin A is a temperature-sensitive process regulated by a pheromone peptide through a three-component regulatory system. Microbiology 146:2155–2160[PubMed]
    [Google Scholar]
  8. Eijsink V. G. H., Brurberg M. B., Middelhoven P. H., Nes I. F. ( 1996). Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J Bacteriol 178:2232–2237[PubMed]
    [Google Scholar]
  9. Gálvez A., Abriouel H., López R. L., Ben Omar N. ( 2007). Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70 [View Article][PubMed]
    [Google Scholar]
  10. Gursky L. J. ( 2004). Bacteriocin production by Carnobacterium maltaromaticum UAL26 University of Alberta; Edmonton, AB, Canada:
    [Google Scholar]
  11. Gursky L. J., Martin N. I., Derksen D. J., van Belkum M. J., Kaur K., Vederas J. C., Stiles M. E., McMullen L. M. ( 2006). Production of piscicolin 126 by Carnobacterium maltaromaticum UAL26 is controlled by temperature and induction peptide concentration. Arch Microbiol 186:317–325 [View Article][PubMed]
    [Google Scholar]
  12. Hühne K., Axelsson L., Holck A., Kröckel L. ( 1996). Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains. Microbiology 142:1437–1448 [View Article][PubMed]
    [Google Scholar]
  13. Jack R. W., Wan J., Gordon J., Harmark K., Davidson B. E., Hillier A. J., Wettenhall R. E. H., Hickey M. W., Coventry M. J. ( 1996). Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Appl Environ Microbiol 62:2897–2903[PubMed]
    [Google Scholar]
  14. Khouiti Z., Simon J. P. ( 2004). Carnocin KZ213 produced by Carnobacterium piscicola 213 is adsorbed onto cells during growth. Its biosynthesis is regulated by temperature, pH and medium composition. J Ind Microbiol Biotechnol 31:5–10 [View Article][PubMed]
    [Google Scholar]
  15. Killian J. A., Fabrie C. H., Baart W., Morein S., de Kruijff B. ( 1992). Effects of temperature variation and phenethyl alcohol addition on acyl chain order and lipid organization in Escherichia coli derived membrane systems. A 2H- and 31P-NMR study. Biochim Biophys Acta 1105:253–262 [View Article][PubMed]
    [Google Scholar]
  16. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L. ( 2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580 [View Article][PubMed]
    [Google Scholar]
  17. Kuipers O. P., Beerthuyzen M. M., de Ruyter P. G., Luesink E. J., de Vos W. M. ( 1995). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270:27299–27304 [View Article][PubMed]
    [Google Scholar]
  18. Lewus C. B., Montville T. J. ( 1991). Detection of bacteriocins produced by lactic acid bacteria. J Microbiol Methods 13:145–150 [View Article]
    [Google Scholar]
  19. Messens W., Verluyten J., Leroy F., De Vuyst L. ( 2003). Modelling growth and bacteriocin production by Lactobacillus curvatus LTH 1174 in response to temperature and pH values used for European sausage fermentation processes. Int J Food Microbiol 81:41–52 [View Article][PubMed]
    [Google Scholar]
  20. Molina-Höppner A., Doster W., Vogel R. F., Gänzle M. G. ( 2004). Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. Appl Environ Microbiol 70:2013–2020 [View Article][PubMed]
    [Google Scholar]
  21. Nedwell D. B. ( 1999). Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol 30:101–111 [View Article][PubMed]
    [Google Scholar]
  22. O’Sullivan L., Ross R. P., Hill C. ( 2002). Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 84:593–604 [View Article][PubMed]
    [Google Scholar]
  23. Pfaffl M. W. ( 2006). Relative quantification. Real-Time PCR63–80 Dorak M. T. New York: Taylor & Francis;
    [Google Scholar]
  24. Quadri L. E. N. ( 2002). Regulation of antimicrobial peptide production by autoinducer-mediated quorum sensing in lactic acid bacteria. Antonie van Leeuwenhoek 82:133–145 [View Article][PubMed]
    [Google Scholar]
  25. Saucier L., Poon A., Stiles M. E. ( 1995). Induction of bacteriocin in Carnobacterium piscicola LV17. J Appl Bacteriol 78:684–690 [View Article]
    [Google Scholar]
  26. Schillinger U., Lücke F. K. ( 1989). Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol 55:1901–1906[PubMed]
    [Google Scholar]
  27. Schwab C., Gänzle M. G. ( 2006). Effect of membrane lateral pressure on the expression of fructosyltransferases in Lactobacillus reuteri. Syst Appl Microbiol 29:89–99 [View Article][PubMed]
    [Google Scholar]
  28. Skaugen M., Cintas L. M., Nes I. F. ( 2003). Genetics of bacteriocin production in lactic acid bacteria. Genetics of Lactic Acid Bacteria225–260 Wood B. J. B., Warner P. J. New York: Kluwer; [View Article]
    [Google Scholar]
  29. Tagg J. R., Dajani A. S., Wannamaker L. W. ( 1976). Bacteriocins of gram-positive bacteria. Bacteriol Rev 40:722–756[PubMed]
    [Google Scholar]
  30. Technical University of Denmark( 2013). tmhmm Server v. 2.0. Prediction of transmembrane helices in proteins. http://www.cbs.dtu.dk/services/TMHMM-2.0/
  31. van Belkum M. J., Stiles M. E. ( 1995). Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum. Appl Environ Microbiol 61:3573–3579[PubMed]
    [Google Scholar]
  32. van Belkum M. J., Stiles M. E. ( 2006). Characterization of the theta-type plasmid pCD3.4 from Carnobacterium divergens, and modulation of its host range by RepA mutation. Microbiology 152:171–178 [View Article][PubMed]
    [Google Scholar]
  33. Vaughan A., Eijsink V. G., Van Sinderen D. ( 2003). Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Appl Environ Microbiol 69:7194–7203 [View Article][PubMed]
    [Google Scholar]
  34. Vogel R. F., Pohle B. S., Tichaczek P. S., Hammes W. P. ( 1993). The competitive advantage of Lactobacillus curvatus LTH 1174 in sausage fermentations is caused by formation of curvacin A. Syst Appl Microbiol 16:457–462 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078030-0
Loading
/content/journal/micro/10.1099/mic.0.078030-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed