1887

Abstract

Piscicolin 126 is a class 2a bacteriocin produced by strains UAL26 and JG126. Whilst strain UAL26 shows temperature-dependent piscicolin 126 production, strain JG126 produces bacteriocin at any growth temperature. Several clones containing combinations of the ATP-binding cassette transporter () and transporter accessory () genes from JG126 and UAL26 were created and tested for bacteriocin production. Bacteriocin production at 25 °C was observed only for a clone containing both and from JG126 (U-TE) and a clone containing from UAL26 and from JG126 (U-BamTE). Therefore, the deletion of a single CG base pair located on of UAL26 that results in a frameshift and truncation of PisE causes the temperature-dependent piscicolin 126 production. Bacteriocin production of UAL26 was induced at 25 °C by the addition of supernatant containing the autoinducer peptide (AIP); however, the antimicrobial activity was lost after two subsequent overnight cultivations due to the presumed lack of the AIP. Changes in membrane fluidity due to changes in temperature or the presence of 2-phenylethanol (PHE) affected bacteriocin production of UAL26, but not of clones U-TE or U-BamTE. Similarly, increased membrane fluidity due to PHE addition reduced production of sakacin A in Lb706 and LTH 1174. The mechanism involved in the temperature-dependent piscicolin 126 production was described. Due to the conformational change in PisE at 25 °C, the transport machinery was not able to translocate AIP. To the best of our knowledge, this is the first report that links membrane fluidity with the regulation of bacteriocin production.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078030-0
2014-08-01
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1670.html?itemId=/content/journal/micro/10.1099/mic.0.078030-0&mimeType=html&fmt=ahah

References

  1. Axelsson L., Holck A..( 1995;). The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. J Bacteriol177:2125–2137[PubMed]
    [Google Scholar]
  2. Axelsson L., Katla T., Bjørnslett M., Eijsink V. G., Holck A..( 1998;). A system for heterologous expression of bacteriocins in Lactobacillus sake. FEMS Microbiol Lett168:137–143 [CrossRef][PubMed]
    [Google Scholar]
  3. Biemans-Oldehinkel E., Doeven M. K., Poolman B..( 2006;). ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett580:1023–1035 [CrossRef][PubMed]
    [Google Scholar]
  4. Bogdanov M., Heacock P. N., Dowhan W..( 2002;). A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J21:2107–2116 [CrossRef][PubMed]
    [Google Scholar]
  5. Cleveland J., Montville T. J., Nes I. F., Chikindas M. L..( 2001;). Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol71:1–20 [CrossRef][PubMed]
    [Google Scholar]
  6. DeVuyst L., Callewaert R., Crabbe K..( 1996;). Primary metabolite kinetics of bacteriocin biosynthesis by Lactobacillus amylovorus and evidence for stimulation of bacteriocin production under unfavourable growth conditions. Microbiology142:817–827 [CrossRef]
    [Google Scholar]
  7. Diep D. B., Axelsson L., Grefsli C., Nes I. F..( 2000;). The synthesis of the bacteriocin sakacin A is a temperature-sensitive process regulated by a pheromone peptide through a three-component regulatory system. Microbiology146:2155–2160[PubMed]
    [Google Scholar]
  8. Eijsink V. G. H., Brurberg M. B., Middelhoven P. H., Nes I. F..( 1996;). Induction of bacteriocin production in Lactobacillus sake by a secreted peptide. J Bacteriol178:2232–2237[PubMed]
    [Google Scholar]
  9. Gálvez A., Abriouel H., López R. L., Ben Omar N..( 2007;). Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol120:51–70 [CrossRef][PubMed]
    [Google Scholar]
  10. Gursky L. J..( 2004;). Bacteriocin production by Carnobacterium maltaromaticum UAL26 University of Alberta; Edmonton, AB, Canada:
    [Google Scholar]
  11. Gursky L. J., Martin N. I., Derksen D. J., van Belkum M. J., Kaur K., Vederas J. C., Stiles M. E., McMullen L. M..( 2006;). Production of piscicolin 126 by Carnobacterium maltaromaticum UAL26 is controlled by temperature and induction peptide concentration. Arch Microbiol186:317–325 [CrossRef][PubMed]
    [Google Scholar]
  12. Hühne K., Axelsson L., Holck A., Kröckel L..( 1996;). Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains. Microbiology142:1437–1448 [CrossRef][PubMed]
    [Google Scholar]
  13. Jack R. W., Wan J., Gordon J., Harmark K., Davidson B. E., Hillier A. J., Wettenhall R. E. H., Hickey M. W., Coventry M. J..( 1996;). Characterization of the chemical and antimicrobial properties of piscicolin 126, a bacteriocin produced by Carnobacterium piscicola JG126. Appl Environ Microbiol62:2897–2903[PubMed]
    [Google Scholar]
  14. Khouiti Z., Simon J. P..( 2004;). Carnocin KZ213 produced by Carnobacterium piscicola 213 is adsorbed onto cells during growth. Its biosynthesis is regulated by temperature, pH and medium composition. J Ind Microbiol Biotechnol31:5–10 [CrossRef][PubMed]
    [Google Scholar]
  15. Killian J. A., Fabrie C. H., Baart W., Morein S., de Kruijff B..( 1992;). Effects of temperature variation and phenethyl alcohol addition on acyl chain order and lipid organization in Escherichia coli derived membrane systems. A 2H- and 31P-NMR study. Biochim Biophys Acta1105:253–262 [CrossRef][PubMed]
    [Google Scholar]
  16. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L..( 2001;). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol305:567–580 [CrossRef][PubMed]
    [Google Scholar]
  17. Kuipers O. P., Beerthuyzen M. M., de Ruyter P. G., Luesink E. J., de Vos W. M..( 1995;). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem270:27299–27304 [CrossRef][PubMed]
    [Google Scholar]
  18. Lewus C. B., Montville T. J..( 1991;). Detection of bacteriocins produced by lactic acid bacteria. J Microbiol Methods13:145–150 [CrossRef]
    [Google Scholar]
  19. Messens W., Verluyten J., Leroy F., De Vuyst L..( 2003;). Modelling growth and bacteriocin production by Lactobacillus curvatus LTH 1174 in response to temperature and pH values used for European sausage fermentation processes. Int J Food Microbiol81:41–52 [CrossRef][PubMed]
    [Google Scholar]
  20. Molina-Höppner A., Doster W., Vogel R. F., Gänzle M. G..( 2004;). Protective effect of sucrose and sodium chloride for Lactococcus lactis during sublethal and lethal high-pressure treatments. Appl Environ Microbiol70:2013–2020 [CrossRef][PubMed]
    [Google Scholar]
  21. Nedwell D. B..( 1999;). Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol30:101–111 [CrossRef][PubMed]
    [Google Scholar]
  22. O’Sullivan L., Ross R. P., Hill C..( 2002;). Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie84:593–604 [CrossRef][PubMed]
    [Google Scholar]
  23. Pfaffl M. W..( 2006;). Relative quantification. Real-Time PCR63–80 Dorak M. T.. New York: Taylor & Francis;
    [Google Scholar]
  24. Quadri L. E. N..( 2002;). Regulation of antimicrobial peptide production by autoinducer-mediated quorum sensing in lactic acid bacteria. Antonie van Leeuwenhoek82:133–145 [CrossRef][PubMed]
    [Google Scholar]
  25. Saucier L., Poon A., Stiles M. E..( 1995;). Induction of bacteriocin in Carnobacterium piscicola LV17. J Appl Bacteriol78:684–690 [CrossRef]
    [Google Scholar]
  26. Schillinger U., Lücke F. K..( 1989;). Antibacterial activity of Lactobacillus sake isolated from meat. Appl Environ Microbiol55:1901–1906[PubMed]
    [Google Scholar]
  27. Schwab C., Gänzle M. G..( 2006;). Effect of membrane lateral pressure on the expression of fructosyltransferases in Lactobacillus reuteri. Syst Appl Microbiol29:89–99 [CrossRef][PubMed]
    [Google Scholar]
  28. Skaugen M., Cintas L. M., Nes I. F..( 2003;). Genetics of bacteriocin production in lactic acid bacteria. Genetics of Lactic Acid Bacteria225–260 Wood B. J. B., Warner P. J.. New York: Kluwer; [CrossRef]
    [Google Scholar]
  29. Tagg J. R., Dajani A. S., Wannamaker L. W..( 1976;). Bacteriocins of gram-positive bacteria. Bacteriol Rev40:722–756[PubMed]
    [Google Scholar]
  30. Technical University of Denmark( 2013;). tmhmm Server v. 2.0. Prediction of transmembrane helices in proteins. http://www.cbs.dtu.dk/services/TMHMM-2.0/
  31. van Belkum M. J., Stiles M. E..( 1995;). Molecular characterization of genes involved in the production of the bacteriocin leucocin A from Leuconostoc gelidum. Appl Environ Microbiol61:3573–3579[PubMed]
    [Google Scholar]
  32. van Belkum M. J., Stiles M. E..( 2006;). Characterization of the theta-type plasmid pCD3.4 from Carnobacterium divergens, and modulation of its host range by RepA mutation. Microbiology152:171–178 [CrossRef][PubMed]
    [Google Scholar]
  33. Vaughan A., Eijsink V. G., Van Sinderen D..( 2003;). Functional characterization of a composite bacteriocin locus from malt isolate Lactobacillus sakei 5. Appl Environ Microbiol69:7194–7203 [CrossRef][PubMed]
    [Google Scholar]
  34. Vogel R. F., Pohle B. S., Tichaczek P. S., Hammes W. P..( 1993;). The competitive advantage of Lactobacillus curvatus LTH 1174 in sausage fermentations is caused by formation of curvacin A. Syst Appl Microbiol16:457–462 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078030-0
Loading
/content/journal/micro/10.1099/mic.0.078030-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error