1887

Abstract

Biofilm formation is a critical component to the lifestyle of many naturally occurring cellulose-degrading microbes. In this work, cellular aggregation and biofilm formation of , a cellulolytic anaerobic bacterium, was investigated using a combination of microscopy and analytical techniques. Aggregates included thread-like linkages and a DNA/protein-rich extracellular matrix when grown on soluble cellobiose. Similar dense biofilms formed on the surface of the model cellulosic substrate Whatman no. 1 filter paper. Following initially dispersed attachment, microcolonies of ~500 µm diameter formed on the filter paper after 6 days. Enzymic treatment of both the biofilm and cellular aggregates with DNase and proteinase resulted in significant loss of rigidity, pointing to the key role of extracellular DNA and proteins in the biofilm structure. A high-throughput biofilm assay was adapted for studying potential regulators of biofilm formation. Various media manipulations were shown to greatly impact biofilm formation, including repression in the presence of glucose but not the β(1→4)-linked disaccharide cellobiose, implicating a balance of hydrolytic activity and assimilation to maintain biofilm integrity. Using the microtitre plate biofilm assay, DNase and proteinase dispersed ~60 and 30 % of mature biofilms, respectively, whilst RNase had no impact. This work suggests that has evolved a DNA/protein-rich biofilm matrix complementing its cellulolytic nature. These insights add to our current understanding of natural ecosystems as well as strategies for efficient bioprocess design.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.078014-0
2014-06-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1134.html?itemId=/content/journal/micro/10.1099/mic.0.078014-0&mimeType=html&fmt=ahah

References

  1. Banin E., Brady K. M., Greenberg E. P.. ( 2006;). Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol72:2064–2069 [CrossRef][PubMed]
    [Google Scholar]
  2. Böckelmann U., Janke A., Kuhn R., Neu T. R., Wecke J., Lawrence J. R., Szewzyk U.. ( 2006;). Bacterial extracellular DNA forming a defined network-like structure. FEMS Microbiol Lett262:31–38 [CrossRef][PubMed]
    [Google Scholar]
  3. Boles B. R., Horswill A. R.. ( 2011;). Staphylococcal biofilm disassembly. Trends Microbiol19:449–455 [CrossRef][PubMed]
    [Google Scholar]
  4. Cavedon K., Leschine S. B., Canale-Parola E.. ( 1990;). Cellulase system of a free-living, mesophilic Clostridium (strain C7). J Bacteriol172:4222–4230[PubMed]
    [Google Scholar]
  5. Chang Y., Gu W., McLandsborough L.. ( 2012;). Low concentration of ethylenediaminetetraacetic acid (EDTA) affects biofilm formation of Listeria monocytogenes by inhibiting its initial adherence. Food Microbiol29:10–17 [CrossRef][PubMed]
    [Google Scholar]
  6. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J.. ( 1987;). Bacterial biofilms in nature and disease. Annu Rev Microbiol41:435–464 [CrossRef][PubMed]
    [Google Scholar]
  7. Desvaux M.. ( 2005;). Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol Rev29:741–764 [CrossRef][PubMed]
    [Google Scholar]
  8. Djordjevic D., Wiedmann M., McLandsborough L. A.. ( 2002;). Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl Environ Microbiol68:2950–2958 [CrossRef][PubMed]
    [Google Scholar]
  9. Dominiak D. M., Nielsen J. L., Nielsen P. H.. ( 2011;). Extracellular DNA is abundant and important for microcolony strength in mixed microbial biofilms. Environ Microbiol13:710–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Drepper T., Huber R., Heck A., Circolone F., Hillmer A. K., Büchs J., Jaeger K. E.. ( 2010;). Flavin mononucleotide-based fluorescent reporter proteins outperform green fluorescent protein-like proteins as quantitative in vivo real-time reporters. Appl Environ Microbiol76:5990–5994 [CrossRef][PubMed]
    [Google Scholar]
  11. Dumitrache A., Wolfaardt G., Allen G., Liss S. N., Lynd L. R.. ( 2013a;). Form and function of Clostridium thermocellum biofilms. Appl Environ Microbiol79:231–239 [CrossRef][PubMed]
    [Google Scholar]
  12. Dumitrache A., Wolfaardt G. M., Allen D. G., Liss S. N., Lynd L. R.. ( 2013b;). Tracking the cellulolytic activity of Clostridium thermocellum biofilms. Biotechnol Biofuels6:175 [CrossRef][PubMed]
    [Google Scholar]
  13. Fux C. A., Costerton J. W., Stewart P. S., Stoodley P.. ( 2005;). Survival strategies of infectious biofilms. Trends Microbiol13:34–40 [CrossRef][PubMed]
    [Google Scholar]
  14. Goodman S. D., Obergfell K. P., Jurcisek J. A., Novotny L. A., Downey J. S., Ayala E. A., Tjokro N., Li B., Justice S. S., Bakaletz L. O.. ( 2011;). Biofilms can be dispersed by focusing the immune system on a common family of bacterial nucleoid-associated proteins. Mucosal Immunol4:625–637 [CrossRef][PubMed]
    [Google Scholar]
  15. Harmsen M., Lappann M., Knøchel S., Molin S.. ( 2010;). Role of extracellular DNA during biofilm formation by Listeria monocytogenes . Appl Environ Microbiol76:2271–2279 [CrossRef][PubMed]
    [Google Scholar]
  16. Hengge R.. ( 2009;). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol7:263–273 [CrossRef][PubMed]
    [Google Scholar]
  17. Hickman J. W., Tifrea D. F., Harwood C. S.. ( 2005;). A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Nat Acad Sci USA102:14422–14427[CrossRef]
    [Google Scholar]
  18. Jakubovics N. S., Shields R. C., Rajarajan N., Burgess J. G.. ( 2013;). Life after death: the critical role of extracellular DNA in microbial biofilms. Lett Appl Microbiol57:467–475 [CrossRef][PubMed]
    [Google Scholar]
  19. Kenyon W. J., Esch S. W., Buller C. S.. ( 2005;). The curdlan-type exopolysaccharide produced by Cellulomonas flavigena KU forms part of an extracellular glycocalyx involved in cellulose degradation. Antonie van Leeuwenhoek87:143–148 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee S. J., Warnick T. A., Pattathil S., Alvelo-Maurosa J. G., Serapiglia M. J., McCormick H., Brown V., Young N. F., Schnell D. J.. & other authors ( 2012;). Biological conversion assay using Clostridium phytofermentans to estimate plant feedstock quality. Biotechnol Biofuels5:5 [CrossRef][PubMed]
    [Google Scholar]
  21. Leschine S. B.. ( 1995;). Cellulose degradation in anaerobic environments. Annu Rev Microbiol49:399–426 [CrossRef][PubMed]
    [Google Scholar]
  22. Lim Y., Jana M., Luong T. T., Lee C. Y.. ( 2004;). Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus . J Bacteriol186:722–729[CrossRef]
    [Google Scholar]
  23. Lu Y., Zhang Y. H. P., Lynd L. R.. ( 2006;). Enzyme–microbe synergy during cellulose hydrolysis by Clostridium thermocellum . Proc Natl Acad Sci U S A103:16165–16169 [CrossRef][PubMed]
    [Google Scholar]
  24. Lynd L. R., Weimer P. J., van Zyl W. H., Pretorius I. S.. ( 2002;). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev66:506–577 [CrossRef][PubMed]
    [Google Scholar]
  25. Madsen E. L.. ( 2011;). Microorganisms and their roles in fundamental biogeochemical cycles. Curr Opin Biotechnol22:456–464 [CrossRef][PubMed]
    [Google Scholar]
  26. Moons P., Michiels C. W., Aertsen A.. ( 2009;). Bacterial interactions in biofilms. Crit Rev Microbiol35:157–168 [CrossRef][PubMed]
    [Google Scholar]
  27. Myers J. A., Curtis B. S., Curtis W. R.. ( 2013;). Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophys6:4 [CrossRef][PubMed]
    [Google Scholar]
  28. Ottow J. C.. ( 1975;). Ecology, physiology, and genetics of fimbriae and pili. Annu Rev Microbiol29:79–108 [CrossRef][PubMed]
    [Google Scholar]
  29. Paerl H. W., Pinckney J. L.. ( 1996;). A mini-review of microbial consortia: their roles in aquatic production and biogeochemical cycling. Microb Ecol31:225–247 [CrossRef][PubMed]
    [Google Scholar]
  30. Petersen F. C., Tao L., Scheie A. A.. ( 2005;). DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation. J Bacteriol187:4392–4400 [CrossRef][PubMed]
    [Google Scholar]
  31. Simon R., Priefer U., Pühler A.. ( 1983;). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol1:784–791 [CrossRef]
    [Google Scholar]
  32. Stanley N. R., Lazazzera B. A.. ( 2004;). Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol52:917–924 [CrossRef][PubMed]
    [Google Scholar]
  33. Tang L., Schramm A., Neu T. R., Revsbech N. P., Meyer R. L.. ( 2013;). Extracellular DNA in adhesion and biofilm formation of four environmental isolates: a quantitative study. FEMS Microbiol Ecol86:394–403 [CrossRef][PubMed]
    [Google Scholar]
  34. Tolonen A. C., Chilaka A. C., Church G. M.. ( 2009;). Targeted gene inactivation in Clostridium phytofermentans shows that cellulose degradation requires the family 9 hydrolase Cphy3367. Mol Microbiol74:1300–1313 [CrossRef][PubMed]
    [Google Scholar]
  35. Tolonen A. C., Haas W., Chilaka A. C., Aach J., Gygi S. P., Church G. M.. ( 2011;). Proteome-wide systems analysis of a cellulosic biofuel-producing microbe. Mol Syst Biol7:461 [CrossRef][PubMed]
    [Google Scholar]
  36. Wang Z. W., Chen S.. ( 2009;). Potential of biofilm-based biofuel production. Appl Microbiol Biotechnol83:1–18 [CrossRef][PubMed]
    [Google Scholar]
  37. Wang Z. W., Lee S. H., Elkins J. G., Morrell-Falvey J. L.. ( 2011;). Spatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum . AMB Express1:30 [CrossRef][PubMed]
    [Google Scholar]
  38. Wang Z. W., Lee S. H., Elkins J. G., Li Y., Hamilton-Brehm S., Morrell-Falvey J. L.. ( 2013;). Continuous live cell imaging of cellulose attachment by microbes under anaerobic and thermophilic conditions using confocal microscopy. J Environ Sci (China)25:849–856 [CrossRef][PubMed]
    [Google Scholar]
  39. Warnick T. A., Methé B. A., Leschine S. B.. ( 2002;). Clostridium phytofermentans sp. nov., a cellulolytic mesophile from forest soil. Int J Syst Evol Microbiol52:1155–1160 [CrossRef][PubMed]
    [Google Scholar]
  40. Xiong Y., Liu Y.. ( 2013;). Importance of extracellular proteins in maintaining structural integrity of aerobic granules. Colloids Surf B Biointerfaces112:435–440 [CrossRef][PubMed]
    [Google Scholar]
  41. Yemm E. W., Willis A. J.. ( 1954;). The estimation of carbohydrates in plant extracts by anthrone. Biochem J57:508–514[PubMed]
    [Google Scholar]
  42. Young J. M., Leschine S. B., Reguera G.. ( 2012;). Reversible control of biofilm formation by Cellulomonas spp. in response to nitrogen availability. Environ Microbiol14:594–604 [CrossRef][PubMed]
    [Google Scholar]
  43. Zhang Y. H. P., Lynd L. R.. ( 2005;). Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci U S A102:7321–7325 [CrossRef][PubMed]
    [Google Scholar]
  44. Zuroff T. R., Bernstein H., Lloyd-Randolfi J., Jimenez-Taracido L., Stewart P. S., Carlson R. P.. ( 2010;). Robustness analysis of culturing perturbations on Escherichia coli colony biofilm beta-lactam and aminoglycoside antibiotic tolerance. BMC Microbiol10:185 [CrossRef][PubMed]
    [Google Scholar]
  45. Zuroff T. R., Xiques S. B., Curtis W. R.. ( 2013;). Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol Biofuels6:59 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.078014-0
Loading
/content/journal/micro/10.1099/mic.0.078014-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error