1887

Abstract

Short-term adaptation to changing environments relies on regulatory elements translating shifting metabolite concentrations into a specifically optimized transcriptome. So far the focus of analyses has been divided between regulatory elements identified and kinetic studies of small molecules interacting with the regulatory elements . Here we describe how regulon kinetics can describe a regulon through the effects of the metabolite controlling it, exemplified by temporal purine exhaustion in . We deduced a causal relation between the pathway precursor 5-phosphoribosyl-α-1-pyrophosphate (PRPP) and individual mRNA levels, whereby unambiguous and homogeneous relations could be obtained for PurR regulated genes, thus linking a specific regulon to a specific metabolite. As PurR activates gene expression upon binding of PRPP, the mRNA curves reflect the kinetics of PurR PRPP binding and activation. The method singled out the operon as kinetically distinct, which was found to be caused by a guanine riboswitch whose regulation was overlaying the PurR regulation. Importantly, genes could be clustered according to regulatory mechanism and long-term consequences could be distinguished from transient changes – many of which would not be seen in a long-term adaptation to a new environment. The strategy outlined here can be adapted to analyse the individual effects of members from larger metabolomes in virtually any organism, for elucidating regulatory networks .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077933-0
2014-07-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1321.html?itemId=/content/journal/micro/10.1099/mic.0.077933-0&mimeType=html&fmt=ahah

References

  1. Arnau J., Sørensen K. I., Appel K. F., Vogensen F. K., Hammer K.. ( 1996;). Analysis of heat shock gene expression in Lactococcus lactis MG1363. . Microbiology 142:, 1685–1691. [CrossRef][PubMed]
    [Google Scholar]
  2. Bera A. K., Zhu J., Zalkin H., Smith J. L.. ( 2003;). Functional dissection of the Bacillus subtilis pur operator site. . J Bacteriol 185:, 4099–4109. [CrossRef][PubMed]
    [Google Scholar]
  3. Beyer N. H., Roepstorff P., Hammer K., Kilstrup M.. ( 2003;). Proteome analysis of the purine stimulon from Lactococcus lactis. . Proteomics 3:, 786–797. [CrossRef][PubMed]
    [Google Scholar]
  4. Bonner E. R., D’Elia J. N., Billips B. K., Switzer R. L.. ( 2001;). Molecular recognition of pyr mRNA by the Bacillus subtilis attenuation regulatory protein PyrR. . Nucleic Acids Res 29:, 4851–4865. [CrossRef][PubMed]
    [Google Scholar]
  5. Brøndsted L., Hammer K.. ( 1999;). Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis. . Appl Environ Microbiol 65:, 752–758.[PubMed]
    [Google Scholar]
  6. Dressaire C., Redon E., Milhem H., Besse P., Loubière P., Cocaign-Bousquet M.. ( 2008;). Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses. . BMC Genomics 9:, 343. [CrossRef][PubMed]
    [Google Scholar]
  7. Gasson M. J.. ( 1983;). Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. . J Bacteriol 154:, 1–9.[PubMed]
    [Google Scholar]
  8. Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., Ellis B., Gautier L., Ge Y.. & other authors ( 2004;). Bioconductor: open software development for computational biology and bioinformatics. . Genome Biol 5:, R80. [CrossRef][PubMed]
    [Google Scholar]
  9. Hansen M. C., Nielsen A. K., Molin S., Hammer K., Kilstrup M.. ( 2001;). Changes in rRNA levels during stress invalidates results from mRNA blotting: fluorescence in situ rRNA hybridization permits renormalization for estimation of cellular mRNA levels. . J Bacteriol 183:, 4747–4751. [CrossRef][PubMed]
    [Google Scholar]
  10. Jendresen C. B., Kilstrup M., Martinussen J.. ( 2011;). A simplified method for rapid quantification of intracellular nucleoside triphosphates by one-dimensional thin-layer chromatography. . Anal Biochem 409:, 249–259. [CrossRef][PubMed]
    [Google Scholar]
  11. Jendresen C. B., Martinussen J., Kilstrup M.. ( 2012;). The PurR regulon in Lactococcus lactis - transcriptional regulation of the purine nucleotide metabolism and translational machinery. . Microbiology 158:, 2026–2038. [CrossRef][PubMed]
    [Google Scholar]
  12. Jensen P. R., Hammer K.. ( 1993;). Minimal Requirements for Exponential Growth of Lactococcus lactis. . Appl Environ Microbiol 59:, 4363–4366.[PubMed]
    [Google Scholar]
  13. Kilstrup M., Martinussen J.. ( 1998;). A transcriptional activator, homologous to the Bacillus subtilis PurR repressor, is required for expression of purine biosynthetic genes in Lactococcus lactis. . J Bacteriol 180:, 3907–3916.[PubMed]
    [Google Scholar]
  14. Kilstrup M., Jessing S. G., Wichmand-Jørgensen S. B., Madsen M., Nilsson D.. ( 1998;). Activation control of pur gene expression in Lactococcus lactis: proposal for a consensus activator binding sequence based on deletion analysis and site-directed mutagenesis of purC and purD promoter regions. . J Bacteriol 180:, 3900–3906.[PubMed]
    [Google Scholar]
  15. Kilstrup M., Hammer K., Ruhdal Jensen P., Martinussen J.. ( 2005;). Nucleotide metabolism and its control in lactic acid bacteria. . FEMS Microbiol Rev 29:, 555–590. [CrossRef][PubMed]
    [Google Scholar]
  16. Kim S. G., Batt C. A.. ( 1993;). Cloning and sequencing of the Lactococcus lactis subsp. lactis groESL operon. . Gene 127:, 121–126. [CrossRef][PubMed]
    [Google Scholar]
  17. Kukko E., Saarento H.. ( 1983;). Accumulation of pyrophosphate in Escherichia coli. Relationship to growth and nucleotide synthesis. . Arch Microbiol 136:, 209–211. [CrossRef][PubMed]
    [Google Scholar]
  18. Larsen R., Buist G., Kuipers O. P., Kok J.. ( 2004;). ArgR and AhrC are both required for regulation of arginine metabolism in Lactococcus lactis. . J Bacteriol 186:, 1147–1157. [CrossRef][PubMed]
    [Google Scholar]
  19. Lu Y., Switzer R. L.. ( 1996;). Transcriptional attenuation of the Bacillus subtilis pyr operon by the PyrR regulatory protein and uridine nucleotides in vitro. . J Bacteriol 178:, 7206–7211.[PubMed]
    [Google Scholar]
  20. Magdenoska O., Martinussen J., Thykaer J., Nielsen K. F.. ( 2013;). Dispersive solid phase extraction combined with ion-pair ultra high-performance liquid chromatography tandem mass spectrometry for quantification of nucleotides in Lactococcus lactis. . Anal Biochem 440:, 166–177. [CrossRef][PubMed]
    [Google Scholar]
  21. Mandal M., Boese B., Barrick J. E., Winkler W. C., Breaker R. R.. ( 2003;). Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. . Cell 113:, 577–586. [CrossRef][PubMed]
    [Google Scholar]
  22. Martinussen J., Hammer K.. ( 1995;). Powerful methods to establish chromosomal markers in Lactococcus lactis: an analysis of pyrimidine salvage pathway mutants obtained by positive selections. . Microbiology 141:, 1883–1890. [CrossRef][PubMed]
    [Google Scholar]
  23. Martinussen J., Schallert J., Andersen B., Hammer K.. ( 2001;). The pyrimidine operon pyrRPB-carA from Lactococcus lactis. . J Bacteriol 183:, 2785–2794. [CrossRef][PubMed]
    [Google Scholar]
  24. Martinussen J., Wadskov-Hansen S. L. L., Hammer K.. ( 2003;). Two nucleoside uptake systems in Lactococcus lactis: competition between purine nucleosides and cytidine allows for modulation of intracellular nucleotide pools. . J Bacteriol 185:, 1503–1508. [CrossRef][PubMed]
    [Google Scholar]
  25. Martinussen J., Sørensen C., Jendresen C. B., Kilstrup M.. ( 2010;). Two nucleoside transporters in Lactococcus lactis with different substrate specificities. . Microbiology 156:, 3148–3157. [CrossRef][PubMed]
    [Google Scholar]
  26. Miller J. H.. ( 1972;). Assay of β-galactosidase. . In Experiments in Molecular Genetics, pp. 352–355. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  27. Monod J.. ( 1941;). [On the new phenomenon of complex growth in bacterial cultures]. . Proceedings of the Academy of Sciences (France) 212:, 934–936 (in French).
    [Google Scholar]
  28. Schaechter M., Maaløe O., Kjeldgaard N. O.. ( 1958;). Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. . J Gen Microbiol 19:, 592–606. [CrossRef][PubMed]
    [Google Scholar]
  29. Terzaghi B. E., Sandine W. E.. ( 1975;). Improved medium for lactic streptococci and their bacteriophages. . Appl Microbiol 29:, 807–813.[PubMed]
    [Google Scholar]
  30. van Asseldonk M., Simons A., Visser H., de Vos W. M., Simons G.. ( 1993;). Cloning, nucleotide sequence, and regulatory analysis of the Lactococcus lactis dnaJ gene. . J Bacteriol 175:, 1637–1644.[PubMed]
    [Google Scholar]
  31. Weng M., Nagy P. L., Zalkin H.. ( 1995;). Identification of the Bacillus subtilis pur operon repressor. . Proc Natl Acad Sci U S A 92:, 7455–7459. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077933-0
Loading
/content/journal/micro/10.1099/mic.0.077933-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error