1887

Abstract

Methionine is essential in all organisms, as it is both a proteinogenic amino acid and a component of the cofactor, -adenosyl methionine. The metabolic pathway for its biosynthesis has been extensively characterized in ; however, it is becoming apparent that most bacterial species do not use the pathway. Instead, studies on other organisms and genome sequencing data are uncovering significant diversity in the enzymes and metabolic intermediates that are used for methionine biosynthesis. This review summarizes the different biochemical strategies that are employed in the three key steps for methionine biosynthesis from homoserine (i.e. acylation, sulfurylation and methylation). A survey is presented of the presence and absence of the various biosynthetic enzymes in 1593 representative bacterial species, shedding light on the non-canonical nature of the pathway. This review also highlights ways in which knowledge of methionine biosynthesis can be utilized for biotechnological applications. Finally, gaps in the current understanding of bacterial methionine biosynthesis are noted. For example, the paper discusses the presence of one gene () in a large number of species that appear to lack the gene encoding the enzyme for the preceding step in the pathway (), as it is understood in . Therefore, this review aims to move the focus away from , to better reflect the true diversity of bacterial pathways for methionine biosynthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077826-0
2014-08-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1571.html?itemId=/content/journal/micro/10.1099/mic.0.077826-0&mimeType=html&fmt=ahah

References

  1. Aitken S. M., Kirsch J. F.. ( 2005;). The enzymology of cystathionine biosynthesis: strategies for the control of substrate and reaction specificity. . Arch Biochem Biophys 433:, 166–175. [CrossRef][PubMed]
    [Google Scholar]
  2. Aitken S. M., Kim D. H., Kirsch J. F.. ( 2003;). Escherichia coli cystathionine γ-synthase does not obey ping-pong kinetics. Novel continuous assays for the elimination and substitution reactions. . Biochemistry 42:, 11297–11306. [CrossRef][PubMed]
    [Google Scholar]
  3. Aitken S. M., Lodha P. H., Morneau D. J.. ( 2011;). The enzymes of the transsulfuration pathways: active-site characterizations. . Biochim Biophys Acta 1814:, 1511–1517. [CrossRef][PubMed]
    [Google Scholar]
  4. Alaminos M., Ramos J. L.. ( 2001;). The methionine biosynthetic pathway from homoserine in Pseudomonas putida involves the metW, metX, metZ, metH and metE gene products. . Arch Microbiol 176:, 151–154. [CrossRef][PubMed]
    [Google Scholar]
  5. Alexander F. W., Sandmeier E., Mehta P. K., Christen P.. ( 1994;). Evolutionary relationships among pyridoxal-5′-phosphate-dependent enzymes. Regio-specific α, β and γ families. . Eur J Biochem 219:, 953–960. [CrossRef][PubMed]
    [Google Scholar]
  6. Andersen G. L., Beattie G. A., Lindow S. E.. ( 1998;). Molecular characterization and sequence of a methionine biosynthetic locus from Pseudomonas syringae. . J Bacteriol 180:, 4497–4507.[PubMed]
    [Google Scholar]
  7. Auger S., Yuen W. H., Danchin A., Martin-Verstraete I.. ( 2002;). The metIC operon involved in methionine biosynthesis in Bacillus subtilis is controlled by transcription antitermination. . Microbiology 148:, 507–518.[PubMed]
    [Google Scholar]
  8. Auger S., Gomez M. P., Danchin A., Martin-Verstraete I.. ( 2005;). The PatB protein of Bacillus subtilis is a C-S-lyase. . Biochimie 87:, 231–238. [CrossRef][PubMed]
    [Google Scholar]
  9. Bairoch A.. ( 2000;). The ENZYME database in 2000. . Nucleic Acids Res 28:, 304–305. [CrossRef][PubMed]
    [Google Scholar]
  10. Barra L., Fontenelle C., Ermel G., Trautwetter A., Walker G. C., Blanco C.. ( 2006;). Interrelations between glycine betaine catabolism and methionine biosynthesis in Sinorhizobium meliloti strain 102F34. . J Bacteriol 188:, 7195–7204. [CrossRef][PubMed]
    [Google Scholar]
  11. Bartlem D., Lambein I., Okamoto T., Itaya A., Uda Y., Kijima F., Tamaki Y., Nambara E., Naito S.. ( 2000;). Mutation in the threonine synthase gene results in an over-accumulation of soluble methionine in Arabidopsis. . Plant Physiol 123:, 101–110. [CrossRef][PubMed]
    [Google Scholar]
  12. Bennett B. D., Kimball E. H., Gao M., Osterhout R., Van Dien S. J., Rabinowitz J. D.. ( 2009;). Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. . Nat Chem Biol 5:, 593–599. [CrossRef][PubMed]
    [Google Scholar]
  13. Bigelow D. J., Squier T. C.. ( 2005;). Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. . Biochim Biophys Acta 1703:, 121–134. [CrossRef][PubMed]
    [Google Scholar]
  14. Blanco J., Moore R. A., Kabaleeswaran V., Viola R. E.. ( 2003;). A structural basis for the mechanism of aspartate-β-semialdehyde dehydrogenase from Vibrio cholerae. . Protein Sci 12:, 27–33. [CrossRef][PubMed]
    [Google Scholar]
  15. Bolten C. J., Schröder H., Dickschat J., Wittmann C.. ( 2010;). Towards methionine overproduction in Corynebacterium glutamicum–methanethiol and dimethyldisulfide as reduced sulfur sources. . J Microbiol Biotechnol 20:, 1196–1203. [CrossRef][PubMed]
    [Google Scholar]
  16. Born T. L., Blanchard J. S.. ( 1999;). Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Escherichia coli metA-encoded homoserine transsuccinylase. . Biochemistry 38:, 14416–14423. [CrossRef][PubMed]
    [Google Scholar]
  17. Born T. L., Franklin M., Blanchard J. S.. ( 2000;). Enzyme-catalyzed acylation of homoserine: mechanistic characterization of the Haemophilus influenzae met2-encoded homoserine transacetylase. . Biochemistry 39:, 8556–8564. [CrossRef][PubMed]
    [Google Scholar]
  18. Bryant D., Moulton V.. ( 2004;). Neighbor-net: an agglomerative method for the construction of phylogenetic networks. . Mol Biol Evol 21:, 255–265. [CrossRef][PubMed]
    [Google Scholar]
  19. Chassagnole C., Raïs B., Quentin E., Fell D. A., Mazat J. P.. ( 2001;). An integrated study of threonine-pathway enzyme kinetics in Escherichia coli. . Biochem J 356:, 415–423. [CrossRef][PubMed]
    [Google Scholar]
  20. Chiang P. K., Gordon R. K., Tal J., Zeng G. C., Doctor B. P., Pardhasaradhi K., McCann P. P.. ( 1996;). S-Adenosylmethionine and methylation. . FASEB J 10:, 471–480.[PubMed]
    [Google Scholar]
  21. Clausen T., Huber R., Laber B., Pohlenz H. D., Messerschmidt A.. ( 1996;). Crystal structure of the pyridoxal-5′-phosphate dependent cystathionine β-lyase from Escherichia coli at 1.83 Å. . J Mol Biol 262:, 202–224. [CrossRef][PubMed]
    [Google Scholar]
  22. Duclos B., Cortay J. C., Bleicher F., Ron E. Z., Richaud C., Saint Girons I., Cozzone A. J.. ( 1989;). Nucleotide sequence of the metA gene encoding homoserine trans-succinylase in Escherichia coli. . Nucleic Acids Res 17:, 2856. [CrossRef][PubMed]
    [Google Scholar]
  23. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32:, 1792–1797. [CrossRef][PubMed]
    [Google Scholar]
  24. Eliot A. C., Kirsch J. F.. ( 2004;). Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. . Annu Rev Biochem 73:, 383–415. [CrossRef][PubMed]
    [Google Scholar]
  25. Erb T. J., Evans B. S., Cho K., Warlick B. P., Sriram J., Wood B. M. K., Imker H. J., Sweedler J. V., Tabita F. R., Gerlt J. A.. ( 2012;). A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis. . Nat Chem Biol 8:, 926–932. [CrossRef][PubMed]
    [Google Scholar]
  26. Farsi A., Lodha P. H., Skanes J. E., Los H., Kalidindi N., Aitken S. M.. ( 2009;). Interconversion of a pair of active-site residues in Escherichia coli cystathionine γ-synthase, E. coli cystathionine β-lyase, and Saccharomyces cerevisiae cystathionine γ-lyase and development of tools for the investigation of their mechanisms and reaction specificity. . Biochem Cell Biol 87:, 445–457. [CrossRef][PubMed]
    [Google Scholar]
  27. Flavin M., Slaughter C.. ( 1967;). Enzymatic synthesis of homocysteine or methionine directly from O-succinyl-homoserine. . Biochim Biophys Acta 132:, 400–405. [CrossRef][PubMed]
    [Google Scholar]
  28. Foglino M., Borne F., Bally M., Ball G., Patte J. C.. ( 1995;). A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. . Microbiology 141:, 431–439. [CrossRef][PubMed]
    [Google Scholar]
  29. Foster J., Ganatra M., Kamal I., Ware J., Makarova K., Ivanova N., Bhattacharyya A., Kapatral V., Kumar S.. & other authors ( 2005;). The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. . PLoS Biol 3:, e121. [CrossRef][PubMed]
    [Google Scholar]
  30. González J. C., Peariso K., Penner-Hahn J. E., Matthews R. G.. ( 1996;). Cobalamin-independent methionine synthase from Escherichia coli: a zinc metalloenzyme. . Biochemistry 35:, 12228–12234. [CrossRef][PubMed]
    [Google Scholar]
  31. Gophna U., Bapteste E., Doolittle W. F., Biran D., Ron E. Z.. ( 2005;). Evolutionary plasticity of methionine biosynthesis. . Gene 355:, 48–57. [CrossRef][PubMed]
    [Google Scholar]
  32. Goudarzi M., Born T. L.. ( 2006;). Purification and characterization of Thermotoga maritima homoserine transsuccinylase indicates it is a transacetylase. . Extremophiles 10:, 469–478. [CrossRef][PubMed]
    [Google Scholar]
  33. Hacham Y., Gophna U., Amir R.. ( 2003;). In vivo analysis of various substrates utilized by cystathionine γ-synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesis. . Mol Biol Evol 20:, 1513–1520. [CrossRef][PubMed]
    [Google Scholar]
  34. Hopwood E. M., Ahmed D., Aitken S. M.. ( 2014;). A role for glutamate-333 of Saccharomyces cerevisiae cystathionine γ-lyase as a determinant of specificity. . Biochim Biophys Acta 1844:, 465–472. [CrossRef][PubMed]
    [Google Scholar]
  35. Hullo M. F., Auger S., Soutourina O., Barzu O., Yvon M., Danchin A., Martin-Verstraete I.. ( 2007;). Conversion of methionine to cysteine in Bacillus subtilis and its regulation. . J Bacteriol 189:, 187–197. [CrossRef][PubMed]
    [Google Scholar]
  36. Hunter S., Jones P., Mitchell A., Apweiler R., Attwood T. K., Bateman A., Bernard T., Binns D., Bork P.. & other authors ( 2012;). InterPro in 2011: new developments in the family and domain prediction database. . Nucleic Acids Res 40: (D1), D306–D312. [CrossRef][PubMed]
    [Google Scholar]
  37. Hwang B. J., Kim Y., Kim H. B., Hwang H. J., Kim J. H., Lee H. S.. ( 1999;). Analysis of Corynebacterium glutamicum methionine biosynthetic pathway: isolation and analysis of metB encoding cystathionine γ-synthase. . Mol Cells 9:, 300–308.[PubMed]
    [Google Scholar]
  38. Hwang B. J., Yeom H. J., Kim Y., Lee H. S.. ( 2002;). Corynebacterium glutamicum utilizes both transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. . J Bacteriol 184:, 1277–1286. [CrossRef][PubMed]
    [Google Scholar]
  39. Hwang B. J., Park S. D., Kim Y., Kim P., Lee H. S.. ( 2007;). Biochemical analysis on the parallel pathways of methionine biosynthesis in Corynebacterium glutamicum. . J Microbiol Biotechnol 17:, 1010–1017.[PubMed]
    [Google Scholar]
  40. Ivanova N., Daum C., Lang E., Abt B., Kopitz M., Saunders E., Lapidus A., Lucas S., Glavina Del Rio T.. & other authors ( 2010;). Complete genome sequence of Haliangium ochraceum type strain (SMP-2). . Stand Genomic Sci 2:, 96–106. [CrossRef][PubMed]
    [Google Scholar]
  41. Iwama T., Hosokawa H., Lin W., Shimizu H., Kawai K., Yamagata S.. ( 2004;). Comparative characterization of the oah2 gene homologous to the oah1 of Thermus thermophilus HB8. . Biosci Biotechnol Biochem 68:, 1357–1361. [CrossRef][PubMed]
    [Google Scholar]
  42. Kerr D. S.. ( 1971;). O-Acetylhomoserine sulfhydrylase from Neurospora. Purification and consideration of its function in homocysteine and methionine synthesis. . J Biol Chem 246:, 95–102.[PubMed]
    [Google Scholar]
  43. Kiene R. P., Linn L. J., González J., Moran M. A., Bruton J. A.. ( 1999;). Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. . Appl Environ Microbiol 65:, 4549–4558.[PubMed]
    [Google Scholar]
  44. Koutmos M., Datta S., Pattridge K. A., Smith J. L., Matthews R. G.. ( 2009;). Insights into the reactivation of cobalamin-dependent methionine synthase. . Proc Natl Acad Sci U S A 106:, 18527–18532. [CrossRef][PubMed]
    [Google Scholar]
  45. Krömer J. O., Wittmann C., Schröder H., Heinzle E.. ( 2006;). Metabolic pathway analysis for rational design of L-methionine production by Escherichia coli and Corynebacterium glutamicum. . Metab Eng 8:, 353–369. [CrossRef][PubMed]
    [Google Scholar]
  46. Kumar D., Gomes J.. ( 2005;). Methionine production by fermentation. . Biotechnol Adv 23:, 41–61. [CrossRef][PubMed]
    [Google Scholar]
  47. Lawrence J. G., Roth J. R.. ( 1996;). Evolution of coenzyme B12 synthesis among enteric bacteria: evidence for loss and reacquisition of a multigene complex. . Genetics 142:, 11–24.[PubMed]
    [Google Scholar]
  48. Lee L. W., Ravel J. M., Shive W.. ( 1966;). Multimetabolite control of a biosynthetic pathway by sequential metabolites. . J Biol Chem 241:, 5479–5480.[PubMed]
    [Google Scholar]
  49. Ma Y., Biava H., Contestabile R., Budisa N., di Salvo M. L.. ( 2014;). Coupling bioorthogonal chemistries with artificial metabolism: intracellular biosynthesis of azidohomoalanine and its incorporation into recombinant proteins. . Molecules 19:, 1004–1022. [CrossRef][PubMed]
    [Google Scholar]
  50. Manders A. L., Jaworski A. F., Ahmed M., Aitken S. M.. ( 2013;). Exploration of structure–function relationships in Escherichia coli cystathionine γ-synthase and cystathionine β-lyase via chimeric constructs and site-specific substitutions. . Biochim Biophys Acta 1834:, 1044–1053. [CrossRef][PubMed]
    [Google Scholar]
  51. McCutcheon J. P., Moran N. A.. ( 2012;). Extreme genome reduction in symbiotic bacteria. . Nat Rev Microbiol 10:, 13–26.[PubMed]
    [Google Scholar]
  52. Messerschmidt A., Worbs M., Steegborn C., Wahl M. C., Huber R., Laber B., Clausen T.. ( 2003;). Determinants of enzymatic specificity in the Cys-Met-metabolism PLP-dependent enzymes family: crystal structure of cystathionine γ-lyase from yeast and intrafamiliar structure comparison. . Biol Chem 384:, 373–386. [CrossRef][PubMed]
    [Google Scholar]
  53. Nakamori S., Kobayashi S., Nishimura T., Takagi H.. ( 1999;). Mechanism of L-methionine overproduction by Escherichia coli: the replacement of Ser-54 by Asn in the MetJ protein causes the derepression of L-methionine biosynthetic enzymes. . Appl Microbiol Biotechnol 52:, 179–185. [CrossRef][PubMed]
    [Google Scholar]
  54. Pasamontes A., Garcia-Vallve S.. ( 2006;). Use of a multi-way method to analyze the amino acid composition of a conserved group of orthologous proteins in prokaryotes. . BMC Bioinformatics 7:, 257. [CrossRef][PubMed]
    [Google Scholar]
  55. Patrick W. M., Quandt E. M., Swartzlander D. B., Matsumura I.. ( 2007;). Multicopy suppression underpins metabolic evolvability. . Mol Biol Evol 24:, 2716–2722. [CrossRef][PubMed]
    [Google Scholar]
  56. Picardeau M., Bauby H., Saint Girons I.. ( 2003;). Genetic evidence for the existence of two pathways for the biosynthesis of methionine in the Leptospira spp.. FEMS Microbiol Lett 225:, 257–262. [CrossRef][PubMed]
    [Google Scholar]
  57. Punta M., Coggill P. C., Eberhardt R. Y., Mistry J., Tate J., Boursnell C., Pang N., Forslund K., Ceric G.. & other authors ( 2012;). The Pfam protein families database. . Nucleic Acids Res 40: (D1), D290–D301. [CrossRef][PubMed]
    [Google Scholar]
  58. Rabeh W. M., Cook P. F.. ( 2004;). Structure and mechanism of O-acetylserine sulfhydrylase. . J Biol Chem 279:, 26803–26806. [CrossRef][PubMed]
    [Google Scholar]
  59. Ravanel S., Gakière B., Job D., Douce R.. ( 1998;). The specific features of methionine biosynthesis and metabolism in plants. . Proc Natl Acad Sci U S A 95:, 7805–7812. [CrossRef][PubMed]
    [Google Scholar]
  60. Rodionov D. A., Vitreschak A. G., Mironov A. A., Gelfand M. S.. ( 2004;). Comparative genomics of the methionine metabolism in Gram-positive bacteria: a variety of regulatory systems. . Nucleic Acids Res 32:, 3340–3353. [CrossRef][PubMed]
    [Google Scholar]
  61. Rotem O., Biran D., Ron E. Z.. ( 2013;). Methionine biosynthesis in Agrobacterium tumefaciens: study of the first enzyme. . Res Microbiol 164:, 12–16. [CrossRef][PubMed]
    [Google Scholar]
  62. Rowbury R. J.. ( 1983;). Methionine biosynthesis and its regulation. . In Amino Acids: Biosynthesis and Genetic Regulation, pp. 191–211. Edited by Hermann K. M., Somerville R. L... Reading, MA:: Addison-Wesley;.
    [Google Scholar]
  63. Rowbury R. J., Woods D. D.. ( 1961;). Further studies on the repression of methionine synthesis in Escherichia coli. . J Gen Microbiol 24:, 129–144. [CrossRef][PubMed]
    [Google Scholar]
  64. Rowbury R. J., Woods D. D.. ( 1964;). O-Succinylhomoserine as an intermediate in the synthesis of cystathionine by Escherichia coli. . J Gen Microbiol 36:, 341–358. [CrossRef][PubMed]
    [Google Scholar]
  65. Rückert C., Pühler A., Kalinowski J.. ( 2003;). Genome-wide analysis of the L-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. . J Biotechnol 104:, 213–228. [CrossRef][PubMed]
    [Google Scholar]
  66. Saha B., Mukherjee S., Das A. K.. ( 2009;). Molecular characterization of Mycobacterium tuberculosis cystathionine gamma synthase–Apo- and holoforms. . Int J Biol Macromol 44:, 385–392. [CrossRef][PubMed]
    [Google Scholar]
  67. Sayers E. W., Barrett T., Benson D. A., Bryant S. H., Canese K., Chetvernin V., Church D. M., DiCuccio M., Edgar R.. & other authors ( 2009;). Database resources of the National Center for Biotechnology Information. . Nucleic Acids Res 37: (Database), D5–D15. [CrossRef][PubMed]
    [Google Scholar]
  68. Seiflein T. A., Lawrence J. G.. ( 2006;). Two transsulfurylation pathways in Klebsiella pneumoniae. . J Bacteriol 188:, 5762–5774. [CrossRef][PubMed]
    [Google Scholar]
  69. Serra A. L., Mariscotti J. F., Barra J. L., Lucchesi G. I., Domenech C. E., Lisa A. T.. ( 2002;). Glycine betaine transmethylase mutant of Pseudomonas aeruginosa. . J Bacteriol 184:, 4301–4303. [CrossRef][PubMed]
    [Google Scholar]
  70. Sletten E. M., Bertozzi C. R.. ( 2009;). Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. . Angew Chem Int Ed Engl 48:, 6974–6998. [CrossRef][PubMed]
    [Google Scholar]
  71. Smacchi E., Gobbetti M.. ( 1998;). Purification and characterization of cystathionine γ-lyase from Lactobacillus fermentum DT41. . FEMS Microbiol Lett 166:, 197–202.[PubMed]
    [Google Scholar]
  72. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J.. & other authors ( 2000;). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. . Nature 406:, 959–964. [CrossRef][PubMed]
    [Google Scholar]
  73. Sun J., Steindler L., Thrash J. C., Halsey K. H., Smith D. P., Carter A. E., Landry Z. C., Giovannoni S. J.. ( 2011;). One carbon metabolism in SAR11 pelagic marine bacteria. . PLoS ONE 6:, e23973. [CrossRef][PubMed]
    [Google Scholar]
  74. Talavera G., Castresana J.. ( 2007;). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. . Syst Biol 56:, 564–577. [CrossRef][PubMed]
    [Google Scholar]
  75. Tanioka Y., Yabuta Y., Yamaji R., Shigeoka S., Nakano Y., Watanabe F., Inui H.. ( 2009;). Occurrence of pseudovitamin B12 and its possible function as the cofactor of cobalamin-dependent methionine synthase in a cyanobacterium Synechocystis sp. PCC6803. . J Nutr Sci Vitaminol (Tokyo) 55:, 518–521. [CrossRef][PubMed]
    [Google Scholar]
  76. Tanioka Y., Miyamoto E., Yabuta Y., Ohnishi K., Fujita T., Yamaji R., Misono H., Shigeoka S., Nakano Y.. & other authors ( 2010;). Methyladeninylcobamide functions as the cofactor of methionine synthase in a Cyanobacterium, Spirulina platensis NIES-39. . FEBS Lett 584:, 3223–3226. [CrossRef][PubMed]
    [Google Scholar]
  77. Tatusov R. L., Fedorova N. D., Jackson J. D., Jacobs A. R., Kiryutin B., Koonin E. V., Krylov D. M., Mazumder R., Mekhedov S. L.. & other authors ( 2003;). The COG database: an updated version includes eukaryotes. . BMC Bioinformatics 4:, 41. [CrossRef][PubMed]
    [Google Scholar]
  78. Tran T. H., Krishnamoorthy K., Begley T. P., Ealick S. E.. ( 2011;). A novel mechanism of sulfur transfer catalyzed by O-acetylhomoserine sulfhydrylase in the methionine-biosynthetic pathway of Wolinella succinogenes. . Acta Crystallogr D Biol Crystallogr 67:, 831–838. [CrossRef][PubMed]
    [Google Scholar]
  79. Usuda Y., Kurahashi O.. ( 2005;). Effects of deregulation of methionine biosynthesis on methionine excretion in Escherichia coli. . Appl Environ Microbiol 71:, 3228–3234. [CrossRef][PubMed]
    [Google Scholar]
  80. Valley C. C., Cembran A., Perlmutter J. D., Lewis A. K., Labello N. P., Gao J., Sachs J. N.. ( 2012;). The methionine-aromatic motif plays a unique role in stabilizing protein structure. . J Biol Chem 287:, 34979–34991. [CrossRef][PubMed]
    [Google Scholar]
  81. Vermeij P., Kertesz M. A.. ( 1999;). Pathways of assimilative sulfur metabolism in Pseudomonas putida. . J Bacteriol 181:, 5833–5837.[PubMed]
    [Google Scholar]
  82. Whitfield C. D., Steers E. J. Jr, Weissbach H.. ( 1970;). Purification and properties of 5-methyltetrahydropteroyltriglutamate-homocysteine transmethylase. . J Biol Chem 245:, 390–401.[PubMed]
    [Google Scholar]
  83. Yamagata S.. ( 1971;). Homocysteine synthesis in yeast. Partial purification and properties of O-acetylhomoserine sulfhydrylase. . J Biochem 70:, 1035–1045.[PubMed]
    [Google Scholar]
  84. Zdych E., Peist R., Reidl J., Boos W.. ( 1995;). MalY of Escherichia coli is an enzyme with the activity of a β C-S lyase (cystathionase). . J Bacteriol 177:, 5035–5039.[PubMed]
    [Google Scholar]
  85. Ziegler K., Yusupov M., Bishop B., Born T. L.. ( 2007;). Substrate analysis of homoserine acyltransferase from Bacillus cereus. . Biochem Biophys Res Commun 361:, 510–515. [CrossRef][PubMed]
    [Google Scholar]
  86. Zubieta C., Arkus K. A., Cahoon R. E., Jez J. M.. ( 2008;). A single amino acid change is responsible for evolution of acyltransferase specificity in bacterial methionine biosynthesis. . J Biol Chem 283:, 7561–7567. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077826-0
Loading
/content/journal/micro/10.1099/mic.0.077826-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error