1887

Abstract

Three different multihaem cytochromes were purified from cell extracts of the hyperthermophilic archaeon . One tetrahaem cytochrome, locus tag designation Igni_0530, was purified from membrane fractions together with the iron–sulfur protein Igni_0529. Two octahaem cytochromes, Igni_0955 and Igni_1359, were purified from soluble fractions but were also present in the membrane fraction. N-terminal sequencing showed that three of the four proteins had their signal peptides cleaved off, while results were ambiguous for Igni_0955. In contrast, mass spectrometry of Igni_0955 and Igni_1359 resulted in single mass peaks including the signal sequences and eight haems per subunit and so both forms might be present in the cell. Igni_0955 and Igni_1359 belong to the hydroxylamine dehydrogenase (HAO) family (29 % mutual identity). HAO or reductase activities with inorganic sulfur compounds were not detected. Igni_0955 was reduced by enriched hydrogenase at a specific activity of 243 nmol min (mg hydrogenase) while activity was non-existent for Igni_0530 and low for Igni_1359. Immuno-electron microscopy of ultra-thin sections showed that Igni_0955 and Igni_1359 are located in both membranes and also in the intermembrane compartment. We concluded that these cytochromes might function as electron shuttles between the hydrogenase in the outer cellular membrane and cellular reductases, whereas Igni_0530 might be part of the sulfur-reducing mechanism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077792-0
2014-06-01
2020-07-10
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1278.html?itemId=/content/journal/micro/10.1099/mic.0.077792-0&mimeType=html&fmt=ahah

References

  1. Allen J. W., Harvat E. M., Stevens J. M., Ferguson S. J.. ( 2006;). A variant system I for cytochrome c biogenesis in archaea and some bacteria has a novel CcmE and no CcmH. FEBS Lett580:4827–4834 [CrossRef][PubMed]
    [Google Scholar]
  2. Bertini I., Cavallaro G., Rosato A.. ( 2006;). Cytochrome c: occurrence and functions. Chem Rev106:90–115 [CrossRef][PubMed]
    [Google Scholar]
  3. Blöchl E., Rachel R., Burggraf S., Hafenbradl D., Jannasch H. W., Stetter K. O.. ( 1997;). Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles1:14–21 [CrossRef][PubMed]
    [Google Scholar]
  4. Blum H., Beier H., Gross H. J.. ( 1987;). Improved silver staining of plant proteins, RNA and DNA in polyacylamide gels. Electrophoresis8:93–99 [CrossRef]
    [Google Scholar]
  5. Cammack R., Fauque G., Moura J. J. G., Le Gall J.. ( 1984;). ESR studies of cytochrome c 3 from Desulfovibrio desulfuricans strain Norway 4 – midpoint potentials of the 4 haems, and interactions with ferredoxin and colloidal sulfur. Biochim Biophys Acta784:68–74 [CrossRef]
    [Google Scholar]
  6. Cheah K. S.. ( 1970a;). The membrane-bound ascorbate oxidase system of Halobacterium halobium. . Biochim Biophys Acta205:148–160 [CrossRef][PubMed]
    [Google Scholar]
  7. Cheah K. S.. ( 1970b;). Properties of the membrane-bound respiratory chain system of Halobacterium salinarium. . Biochim Biophys Acta216:43–53 [CrossRef][PubMed]
    [Google Scholar]
  8. Dirmeier R., Keller M., Frey G., Huber H., Stetter K. O.. ( 1998;). Purification and properties of an extremely thermostable membrane-bound sulfur-reducing complex from the hyperthermophilic Pyrodictium abyssi. . Eur J Biochem252:486–491 [CrossRef][PubMed]
    [Google Scholar]
  9. Fauque G., Herve D., Le Gall J.. ( 1979;). Structure–function relationship in hemoproteins: the role of cytochrome c3 in the reduction of colloidal sulfur by sulfate-reducing bacteria. Arch Microbiol121:261–264 [CrossRef][PubMed]
    [Google Scholar]
  10. Francis R. T. Jr, Becker R. R.. ( 1984;). Specific indication of hemoproteins in polyacrylamide gels using a double-staining process. Anal Biochem136:509–514 [CrossRef][PubMed]
    [Google Scholar]
  11. Grein F., Ramos A. R., Venceslau S. S., Pereira I. A.. ( 2013;). Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. Biochim Biophys Acta1827:145–160 [CrossRef][PubMed]
    [Google Scholar]
  12. Hanson T. E., Campbell B. J., Kalis K. M., Campbell M. A., Klotz M. G.. ( 2013;). Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate. Front Microbiol4:180 [CrossRef][PubMed]
    [Google Scholar]
  13. Hedderich R., Klimmek O., Kröger A., Dirmeier R., Keller M., Stetter K. O.. ( 1998;). Anaerobic respiration with elemental sulfur and with sulfides. FEMS Microbiol Rev22:353–381 [CrossRef]
    [Google Scholar]
  14. Hirokawa T., Boon-Chieng S., Mitaku S.. ( 1998;). SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics14:378–379 [CrossRef][PubMed]
    [Google Scholar]
  15. Huber H., Küper U., Daxer S., Rachel R.. ( 2012;). The unusual cell biology of the hyperthermophilic Crenarchaeon Ignicoccus hospitalis. . Antonie van Leeuwenhoek102:203–219 [CrossRef][PubMed]
    [Google Scholar]
  16. Junglas B., Briegel A., Burghardt T., Walther P., Wirth R., Huber H., Rachel R.. ( 2008;). Ignicoccus hospitalis and Nanoarchaeum equitans: ultrastructure, cell-cell interaction, and 3D reconstruction from serial sections of freeze-substituted cells and by electron cryotomography. Arch Microbiol190:395–408 [CrossRef][PubMed]
    [Google Scholar]
  17. Kabashima Y., Sakamoto J.. ( 2011;). Purification and biochemical properties of a cytochrome bc complex from the aerobic hyperthermophilic archaeon Aeropyrum pernix. . BMC Microbiol11:52 [CrossRef][PubMed]
    [Google Scholar]
  18. Kamlage B., Blaut M.. ( 1992;). Characterization of cytochromes from Methanosarcina strain Göl and their involvement in electron transport during growth on methanol. J Bacteriol174:3921–3927[PubMed]
    [Google Scholar]
  19. Kern M., Klotz M. G., Simon J.. ( 2011;). The Wolinella succinogenes mcc gene cluster encodes an unconventional respiratory sulphite reduction system. Mol Microbiol82:1515–1530 [CrossRef][PubMed]
    [Google Scholar]
  20. Klotz M. G., Schmid M. C., Strous M., Op Den Camp H. J. M., Jetten M. S. M., Hooper A. B.. ( 2008;). Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Environ Microbiol10:3150–3163 [CrossRef][PubMed]
    [Google Scholar]
  21. Krafft T., Gross R., Kröger A.. ( 1995;). The function of Wolinella succinogenes psr genes in electron transport with polysulphide as the terminal electron acceptor. Eur J Biochem230:601–606 [CrossRef][PubMed]
    [Google Scholar]
  22. Kühn W., Gottschalk G.. ( 1983;). Characterization of the cytochromes occurring in Methanosarcina species. Eur J Biochem135:89–94 [CrossRef][PubMed]
    [Google Scholar]
  23. Küper U., Meyer C., Müller V., Rachel R., Huber H.. ( 2010;). Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic archaeon Ignicoccus hospitalis. . Proc Natl Acad Sci U S A107:3152–3156 [CrossRef][PubMed]
    [Google Scholar]
  24. Laemmli U. K.. ( 1970;). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  25. Lanyi J. K.. ( 1968;). Studies of the electron transport chain of extremely halophilic bacteria. I. Spectrophotometric identification of the cytochromes of Halobacterium cutirubrum. . Arch Biochem Biophys128:716–724 [CrossRef][PubMed]
    [Google Scholar]
  26. Laska S., Lottspeich F., Kletzin A.. ( 2003;). Membrane-bound hydrogenase and sulfur reductase of the hyperthermophilic and acidophilic archaeon Acidianus ambivalens. . Microbiology149:2357–2371 [CrossRef][PubMed]
    [Google Scholar]
  27. Matias P. M., Coelho A. V., Valente F. M., Plácido D., LeGall J., Xavier A. V., Pereira I. A., Carrondo M. A.. ( 2002;). Sulfate respiration in Desulfovibrio vulgaris Hildenborough. Structure of the 16-heme cytochrome c HmcA at 2.5-Å resolution and a view of its role in transmembrane electron transfer. J Biol Chem277:47907–47916 [CrossRef][PubMed]
    [Google Scholar]
  28. Meyerdierks A., Kube M., Kostadinov I., Teeling H., Glöckner F. O., Reinhardt R., Amann R.. ( 2010;). Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol12:422–439 [CrossRef][PubMed]
    [Google Scholar]
  29. Mortenson L. E.. ( 1964;). Ferredoxin requirement for nitrogen fixation by extracts of Clostridium pasteurianum. . Biochim Biophys Acta81:473–478[PubMed]
    [Google Scholar]
  30. Paper W., Jahn U., Hohn M. J., Kronner M., Näther D. J., Burghardt T., Rachel R., Stetter K. O., Huber H.. ( 2007;). Ignicoccus hospitalis sp. nov., the host of ‘Nanoarchaeum equitans’. Int J Syst Evol Microbiol57:803–808 [CrossRef][PubMed]
    [Google Scholar]
  31. Petersen T. N., Brunak S., von Heijne G., Nielsen H.. ( 2011;). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods8:785–786 [CrossRef][PubMed]
    [Google Scholar]
  32. Pihl T. D., Black L. K., Schulman B. A., Maier R. J.. ( 1992;). Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii. . J Bacteriol174:137–143[PubMed]
    [Google Scholar]
  33. Rachel R., Meyer C., Klingl A., Gürster S., Heimerl T., Wasserburger N., Burghardt T., Küper U., Bellack A.. & other authors ( 2010;). Analysis of the ultrastructure of archaea by electron microscopy. Methods Cell Biol96:47–69 [CrossRef][PubMed]
    [Google Scholar]
  34. Sanders C., Turkarslan S., Lee D. W., Daldal F.. ( 2010;). Cytochrome c biogenesis: the Ccm system. Trends Microbiol18:266–274 [CrossRef][PubMed]
    [Google Scholar]
  35. Schäfer G.. ( 2004;). Respiratory chains in Archaea: from minimal systems to supercomplexes. Respiration in Archaea and Bacteria. Diversity of Prokaryotic Respiratory SystemsAdvances in Photosynthesis and Respirationvol. 21–33 Zannoni D.. Dordrecht: Springer; [CrossRef]
    [Google Scholar]
  36. Schägger H., von Jagow G.. ( 1987;). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem166:368–379 [CrossRef][PubMed]
    [Google Scholar]
  37. Scharf B., Wittenberg R., Engelhard M.. ( 1997;). Electron transfer proteins from the haloalkaliphilic archaeon Natronobacterium pharaonis: possible components of the respiratory chain include cytochrome bc and a terminal oxidase cytochrome ba3. . Biochemistry36:4471–4479 [CrossRef][PubMed]
    [Google Scholar]
  38. Seiler M., Mehrle A., Poustka A., Wiemann S.. ( 2006;). The 3of5 web application for complex and comprehensive pattern matching in protein sequences. BMC Bioinformatics7:144 [CrossRef][PubMed]
    [Google Scholar]
  39. Sharma S., Cavallaro G., Rosato A.. ( 2010;). A systematic investigation of multiheme c-type cytochromes in prokaryotes. J Biol Inorg Chem15:559–571 [CrossRef][PubMed]
    [Google Scholar]
  40. Shimamura M., Nishiyama T., Shigetomo H., Toyomoto T., Kawahara Y., Furukawa K., Fujii T.. ( 2007;). Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture. Appl Environ Microbiol73:1065–1072 [CrossRef][PubMed]
    [Google Scholar]
  41. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C.. ( 1985;). Measurement of protein using bicinchoninic acid. Anal Biochem150:76–85 [CrossRef][PubMed]
    [Google Scholar]
  42. Sreeramulu K.. ( 2003;). Purification and partial characterization of cytochrome c552 from Halobacterium salinarium . Indian J Biochem Biophys40:274–277[PubMed]
    [Google Scholar]
  43. Stetter K. O.. ( 1982;). Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C. Nature300:258–260 [CrossRef]
    [Google Scholar]
  44. Stetter K. O.. ( 2006;). Hyperthermophiles in the history of life. Philos Trans R Soc Lond B Biol Sci361:1837–1843 [CrossRef][PubMed]
    [Google Scholar]
  45. Stetter K. O., Fiala G., Huber R., Huber G., Segerer A.. ( 1986;). Life above the boiling point of water?. Experientia42:1187–1191 [CrossRef]
    [Google Scholar]
  46. Stevens J. M., Mavridou D. A., Hamer R., Kritsiligkou P., Goddard A. D., Ferguson S. J.. ( 2011;). Cytochrome c biogenesis system I. FEBS J278:4170–4178 [CrossRef][PubMed]
    [Google Scholar]
  47. Takaichi S., Morita S.. ( 1981;). Procedures and conditions for application of the pyridine hemochrome method to photosynthetically grown cells of Rhodopseudomonas sphaeroides. . J Biochem89:1513–1519[PubMed]
    [Google Scholar]
  48. Tanaka M., Ogawa N., Ihara K., Sugiyama Y., Mukohata Y.. ( 2002;). Cytochrome aa(3) in Haloferax volcanii. . J Bacteriol184:840–845 [CrossRef][PubMed]
    [Google Scholar]
  49. Teixeira M., Batista R., Campos A. P., Gomes C., Mendes J., Pacheco I., Anemüller S., Hagen W. R.. ( 1995;). A seven-iron ferredoxin from the thermoacidophilic archaeon Desulfurolobus ambivalens . Eur J Biochem227:322–327 [CrossRef][PubMed]
    [Google Scholar]
  50. Thauer R. K., Kaster A. K., Seedorf H., Buckel W., Hedderich R.. ( 2008;). Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol6:579–591 [CrossRef][PubMed]
    [Google Scholar]
  51. Thurl S., Witke W., Buhrow I., Schäfer W.. ( 1986;). Quinones from Archaebacteria, II. Different Types of Quinones from Sulphur-Dependent Archaebacteria. Biol Chem Hoppe-Seyler367:191–197[CrossRef]
    [Google Scholar]
  52. Wang M., Tomb J. F., Ferry J. G.. ( 2011;). Electron transport in acetate-grown Methanosarcina acetivorans. . BMC Microbiol11:165 [CrossRef][PubMed]
    [Google Scholar]
  53. Zehnder A. J., Wuhrmann K.. ( 1976;). Titanium (III) citrate as a nontoxic oxidation–reduction buffering system for the culture of obligate anaerobes. Science194:1165–1166 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077792-0
Loading
/content/journal/micro/10.1099/mic.0.077792-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error