1887

Abstract

is a Gram-negative cocco-bacillus that initiates infection by colonizing the upper respiratory tract. Hap is an serine protease autotransporter protein that mediates adherence, invasion and microcolony formation in assays with human epithelial cells and is presumed to facilitate the process of colonization. Additionally, Hap mediates adherence to fibronectin, laminin and collagen IV, extracellular matrix (ECM) proteins that are present in the respiratory tract and are probably important targets for colonization. The region of Hap responsible for adherence to ECM proteins has been localized to the C-terminal 511 aa of the Hap passenger domain (Hap). In this study, we characterized the structural determinants of the interaction between Hap and fibronectin. Using defined fibronectin fragments, we established that Hap interacts with the fibronectin repeat fragment called FNIII. Using site-directed mutagenesis, we found a series of motifs in the C-terminal region of Hap that contribute to the interaction with fibronectin. Most of these motifs are located on the F1 and F3 faces of the Hap structure, suggesting that the F1 and F3 faces may be responsible for the Hap–fibronectin interaction.

Funding
This study was supported by the:
  • NIH (Award AI44322)
  • NIH (Award CA047056)
  • National Natural Science Foundation of China (Award 81370620)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077784-0
2014-06-01
2021-05-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1182.html?itemId=/content/journal/micro/10.1099/mic.0.077784-0&mimeType=html&fmt=ahah

References

  1. Anderson P., Johnston R. B. Jr, Smith D. H. ( 1972). Human serum activities against Hemophilus influenzae, type b. J Clin Invest 51:31–38 [CrossRef][PubMed]
    [Google Scholar]
  2. Bingham R. J., Rudiño-Piñera E., Meenan N. A., Schwarz-Linek U., Turkenburg J. P., Höök M., Garman E. F., Potts J. R. ( 2008). Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains. Proc Natl Acad Sci U S A 105:12254–12258 [CrossRef][PubMed]
    [Google Scholar]
  3. Carlone G. M., Thomas M. L., Rumschlag H. S., Sottnek F. O. ( 1986). Rapid microprocedure for isolating detergent-insoluble outer membrane proteins from Haemophilus species. J Clin Microbiol 24:330–332[PubMed]
    [Google Scholar]
  4. de Bentzmann S., Plotkowski C., Puchelle E. ( 1996). Receptors in the Pseudomonas aeruginosa adherence to injured and repairing airway epithelium. Am J Respir Crit Care Med 154:S155–S162 [CrossRef][PubMed]
    [Google Scholar]
  5. Fink D. L., St. Geme J. W. III ( 2003). Chromosomal expression of the Haemophilus influenzae Hap autotransporter allows fine-tuned regulation of adhesive potential via inhibition of intermolecular autoproteolysis. J Bacteriol 185:1608–1615 [CrossRef][PubMed]
    [Google Scholar]
  6. Fink D. L., Green B. A., St. Geme J. W. III ( 2002). The Haemophilus influenzae Hap autotransporter binds to fibronectin, laminin, and collagen IV. Infect Immun 70:4902–4907 [CrossRef][PubMed]
    [Google Scholar]
  7. Fink D. L., Buscher A. Z., Green B., Fernsten P., St. Geme J. W. III ( 2003). The Haemophilus influenzae Hap autotransporter mediates microcolony formation and adherence to epithelial cells and extracellular matrix via binding regions in the C-terminal end of the passenger domain. Cell Microbiol 5:175–186 [CrossRef][PubMed]
    [Google Scholar]
  8. Foster T. J., Höök M. ( 1998). Surface protein adhesins of Staphylococcus aureus . Trends Microbiol 6:484–488 [CrossRef][PubMed]
    [Google Scholar]
  9. Henderson I. R., Nataro J. P. ( 2001). Virulence functions of autotransporter proteins. Infect Immun 69:1231–1243 [CrossRef][PubMed]
    [Google Scholar]
  10. Henderson I. R., Navarro-Garcia F., Desvaux M., Fernandez R. C., Ala’Aldeen D. ( 2004). Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68:692–744 [CrossRef][PubMed]
    [Google Scholar]
  11. Jönsson K., Signäs C., Müller H. P., Lindberg M. ( 1991). Two different genes encode fibronectin binding proteins in Staphylococcus aureus. The complete nucleotide sequence and characterization of the second gene. Eur J Biochem 202:1041–1048 [CrossRef][PubMed]
    [Google Scholar]
  12. Kingsley R. A., Santos R. L., Keestra A. M., Adams L. G., Bäumler A. J. ( 2002). Salmonella enterica serotype Typhimurium ShdA is an outer membrane fibronectin-binding protein that is expressed in the intestine. Mol Microbiol 43:895–905 [CrossRef][PubMed]
    [Google Scholar]
  13. Laemmli U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef][PubMed]
    [Google Scholar]
  14. Lindgren P. E., Speziale P., McGavin M., Monstein H. J., Höök M., Visai L., Kostiainen T., Bozzini S., Lindberg M. ( 1992). Cloning and expression of two different genes from Streptococcus dysgalactiae encoding fibronectin receptors. J Biol Chem 267:1924–1931[PubMed]
    [Google Scholar]
  15. Lindgren P. E., Signäs C., Rantamäki L., Lindberg M. ( 1994). A fibronectin-binding protein from Streptococcus equisimilis: characterization of the gene and identification of the binding domain. Vet Microbiol 41:235–247 [CrossRef][PubMed]
    [Google Scholar]
  16. Meng G., Spahich N., Kenjale R., Waksman G., St Geme J. W. III ( 2011). Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation. EMBO J 30:3864–3874 [CrossRef][PubMed]
    [Google Scholar]
  17. Mosher D. F., McKeown-Longo P. J. ( 1985). Assembly of fibronectin-containing extracellular matrix: a glimpse of the machinery. Biopolymers 24:199–210 [CrossRef][PubMed]
    [Google Scholar]
  18. Oberhauser A. F., Badilla-Fernandez C., Carrion-Vazquez M., Fernandez J. M. ( 2002). The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol 319:433–447 [CrossRef][PubMed]
    [Google Scholar]
  19. Ohashi T., Erickson H. P. ( 2005). Domain unfolding plays a role in superfibronectin formation. J Biol Chem 280:39143–39151 [CrossRef][PubMed]
    [Google Scholar]
  20. Ohashi T., Erickson H. P. ( 2011). Fibronectin aggregation and assembly: the unfolding of the second fibronectin type III domain. J Biol Chem 286:39188–39199 [CrossRef][PubMed]
    [Google Scholar]
  21. Pankov R., Yamada K. M. ( 2002). Fibronectin at a glance. J Cell Sci 115:3861–3863 [CrossRef][PubMed]
    [Google Scholar]
  22. Peters D. M., Mosher D. F. ( 1987). Localization of cell surface sites involved in fibronectin fibrillogenesis. J Cell Biol 104:121–130 [CrossRef][PubMed]
    [Google Scholar]
  23. Petersen T. E., Thøgersen H. C., Skorstengaard K., Vibe-Pedersen K., Sahl P., Sottrup-Jensen L., Magnusson S. ( 1983). Partial primary structure of bovine plasma fibronectin: three types of internal homology. Proc Natl Acad Sci U S A 80:137–141 [CrossRef][PubMed]
    [Google Scholar]
  24. Potts J. R., Campbell I. D. ( 1994). Fibronectin structure and assembly. Curr Opin Cell Biol 6:648–655 [CrossRef][PubMed]
    [Google Scholar]
  25. Read R. C., Wilson R., Rutman A., Lund V., Todd H. C., Brain A. P., Jeffery P. K., Cole P. J. ( 1991). Interaction of nontypable Haemophilus influenzae with human respiratory mucosa in vitro. J Infect Dis 163:549–558 [CrossRef][PubMed]
    [Google Scholar]
  26. Read R. C., Rutman A. A., Jeffery P. K., Lund V. J., Brain A. P., Moxon E. R., Cole P. J., Wilson R. ( 1992). Interaction of capsulate Haemophilus influenzae with human airway mucosa in vitro. Infect Immun 60:3244–3252[PubMed]
    [Google Scholar]
  27. Schwarz-Linek U., Werner J. M., Pickford A. R., Gurusiddappa S., Kim J. H., Pilka E. S., Briggs J. A., Gough T. S., Höök M. & other authors ( 2003). Pathogenic bacteria attach to human fibronectin through a tandem beta-zipper. Nature 423:177–181 [CrossRef][PubMed]
    [Google Scholar]
  28. Setlow J. K., Randolph M. L., Boling M. E., Mattingly A., Price G., Gordon M. P. ( 1968). Repair of DNA in Haemophilus influenzae. II. Excision, repair of single-strand breaks, defects in transformation, and host cell modification in UV-sensitive mutants. Cold Spring Harb Symp Quant Biol 33:209–218 [CrossRef][PubMed]
    [Google Scholar]
  29. Signäs C., Raucci G., Jönsson K., Lindgren P. E., Anantharamaiah G. M., Höök M., Lindberg M. ( 1989). Nucleotide sequence of the gene for a fibronectin-binding protein from Staphylococcus aureus: use of this peptide sequence in the synthesis of biologically active peptides. Proc Natl Acad Sci U S A 86:699–703 [CrossRef][PubMed]
    [Google Scholar]
  30. Sottile J., Wiley S. ( 1994). Assembly of amino-terminal fibronectin dimers into the extracellular matrix. J Biol Chem 269:17192–17198[PubMed]
    [Google Scholar]
  31. Spahich N. A., St Geme J. W. III ( 2011). Structure and function of the Haemophilus influenzae autotransporters. Front Cell Infect Microbiol 1:5[PubMed] [CrossRef]
    [Google Scholar]
  32. Steinhart W. L., Herriott R. M. ( 1968). Genetic integration in the heterospecific transformation of Haemophilus influenzae cells by Haemophilus parainfluenzae deoxyribonucleic acid. J Bacteriol 96:1725–1731[PubMed]
    [Google Scholar]
  33. Steukers L., Glorieux S., Vandekerckhove A. P., Favoreel H. W., Nauwynck H. J. ( 2012). Diverse microbial interactions with the basement membrane barrier. Trends Microbiol 20:147–155 [CrossRef][PubMed]
    [Google Scholar]
  34. Tomb J. F., Barcak G. J., Chandler M. S., Redfield R. J., Smith H. O. ( 1989). Transposon mutagenesis, characterization, and cloning of transformation genes of Haemophilus influenzae Rd. J Bacteriol 171:3796–3802[PubMed]
    [Google Scholar]
  35. Turk D. C. ( 1984). The pathogenicity of Haemophilus influenzae . J Med Microbiol 18:1–16 [CrossRef][PubMed]
    [Google Scholar]
  36. Vakonakis I., Staunton D., Rooney L. M., Campbell I. D. ( 2007). Interdomain association in fibronectin: insight into cryptic sites and fibrillogenesis. EMBO J 26:2575–2583 [CrossRef][PubMed]
    [Google Scholar]
  37. Valentin-Weigand P., Talay S. R., Timmis K. N., Chhatwal G. S. ( 1993). Identification of a fibronectin-binding protein as adhesin of Streptococcus pyogenes . Zentralbl Bakteriol 278:238–245 [CrossRef][PubMed]
    [Google Scholar]
  38. Westerlund B., Korhonen T. K. ( 1993). Bacterial proteins binding to the mammalian extracellular matrix. Mol Microbiol 9:687–694 [CrossRef][PubMed]
    [Google Scholar]
  39. Willson P. J., Albritton W. L., Slaney L., Setlow J. K. ( 1989). Characterization of a multiple antibiotic resistance plasmid from Haemophilus ducreyi . Antimicrob Agents Chemother 33:1627–1630 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077784-0
Loading
/content/journal/micro/10.1099/mic.0.077784-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error