1887

Abstract

Mitochondrial calcium uniporters (MCUs) (TC no. 1.A.77) are oligomeric channel proteins found in the mitochondrial inner membrane. MCUs have two well-conserved transmembrane segments (TMSs), connected by a linker, similar to bacterial MCU homologues. These proteins and chlamydial IncA proteins (of unknown function; TC no. 9.B.159) are homologous to prokaryotic Mg transporters, AtpI and AtpZ, based on comparison scores of up to 14.5 s. A phylogenetic tree containing all of these proteins showed that the AtpZ proteins cluster coherently as a subset within the large and diverse AtpI cluster, which branches separately from the MCUs and IncAs, both of which cluster coherently. The MCUs and AtpZs share the same two TMS topology, but the AtpIs have four TMSs, and IncAs can have either two (most frequent) or four (less frequent) TMSs. Binary alignments, comparison scores and motif analyses showed that TMSs 1 and 2 align with TMSs 3 and 4 of the AtpIs, suggesting that the four TMS AtpI proteins arose via an intragenic duplication event. These findings establish an evolutionary link interconnecting eukaryotic and prokaryotic Ca and Mg transporters with chlamydial IncAs, and lead us to suggest that all members of the MCU superfamily, including IncAs, function as divalent cation channels.

Funding
This study was supported by the:
  • NIH (Award GM077402A1)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077776-0
2014-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1679.html?itemId=/content/journal/micro/10.1099/mic.0.077776-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  2. Bailey T. L., Williams N., Misleh C., Li W. W. ( 2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:Web ServerW369–W373 [View Article][PubMed]
    [Google Scholar]
  3. Baughman J. M., Perocchi F., Girgis H. S., Plovanich M., Belcher-Timme C. A., Sancak Y., Bao X. R., Strittmatter L., Goldberger O. & other authors ( 2011). Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345 [View Article][PubMed]
    [Google Scholar]
  4. Bick A. G., Calvo S. E., Mootha V. K. ( 2012). Evolutionary diversity of the mitochondrial calcium uniporter. Science 336:886 [View Article][PubMed]
    [Google Scholar]
  5. Chang A. B., Lin R., Studley W. K., Tran C. V., Saier M. H. Jr ( 2004). Phylogeny as a guide to structure and function of membrane transport proteins. Mol Membr Biol 21:171–181 [View Article][PubMed]
    [Google Scholar]
  6. Chen J. S., Reddy V., Chen J. H., Shlykov M. A., Zheng W. H., Cho J., Yen M. R., Saier M. H. Jr ( 2011). Phylogenetic characterization of transport protein superfamilies: superiority of SuperfamilyTree programs over those based on multiple alignments. J Mol Microbiol Biotechnol 21:83–96 [View Article][PubMed]
    [Google Scholar]
  7. De Stefani D., Raffaello A., Teardo E., Szabò I., Rizzuto R. ( 2011). A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340 [View Article][PubMed]
    [Google Scholar]
  8. Doolittle R. F. ( 1994). Convergent evolution: the need to be explicit. Trends Biochem Sci 19:15–18 [View Article][PubMed]
    [Google Scholar]
  9. Felsenstein J. ( 1997). An alternating least squares approach to inferring phylogenies from pairwise distances. Systf Biol 46:101–111 [View Article][PubMed]
    [Google Scholar]
  10. Fields K. A., Fischer E., Hackstadt T. ( 2002). Inhibition of fusion of Chlamydia trachomatis inclusions at 32 °C correlates with restricted export of IncA. Infect Immun 70:3816–3823 [View Article][PubMed]
    [Google Scholar]
  11. Fink W. L. ( 1986). Microcomputers and phylogenetic analysis. Science 234:1135–1139 [View Article][PubMed]
    [Google Scholar]
  12. Fitch W. M., Margoliash E. ( 1967). Construction of phylogenetic trees. Science 155:279–284 [View Article][PubMed]
    [Google Scholar]
  13. Fu L., Niu B., Zhu Z., Wu S., Li W. ( 2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152 [View Article][PubMed]
    [Google Scholar]
  14. Hicks D. B., Wang Z., Wei Y., Kent R., Guffanti A. A., Banciu H., Bechhofer D. H., Krulwich T. A. ( 2003). A tenth atp gene and the conserved atpI gene of a Bacillus atp operon have a role in Mg2+ uptake. Pro3 Natl Acad Sci U S A 100:10213–10218 [View Article][PubMed]
    [Google Scholar]
  15. Katoh K., Standley D. M. ( 2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780 [View Article][PubMed]
    [Google Scholar]
  16. Liu J., Hicks D. B., Krulwich T. A. ( 2013). Roles of AtpI and two YidC-type proteins from alkaliphilic Bacillus pseudofirmus OF4 in ATP synthase assembly and nonfermentative growth. J Bacteriol 195:220–230 [View Article][PubMed]
    [Google Scholar]
  17. Mallilankaraman K., Cárdenas C., Doonan P. J., Chandramoorthy H. C., Irrinki K. M., Golenár T., Csordás G., Madireddi P., Yang J. & other authors ( 2012). MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat Cell Biol 14:1336–1343 [View Article][PubMed]
    [Google Scholar]
  18. Marchi S., Pinton P. ( 2013). Mitochondrial calcium uniporter, MiRNA and cancer: live and let die. Commun Integr Biol 6:e23818 [View Article][PubMed]
    [Google Scholar]
  19. Marchi S., Pinton P. ( 2014). The mitochondrial calcium uniporter complex: molecular components, structure and physiopathological implications. J Physiol 592:829–839 [View Article][PubMed]
    [Google Scholar]
  20. Mok T., Chen J. S., Shlykov M. A., Saier M. ( 2012). Bioinformatic analyses of bacterial mercury ion (Hg2+) transporters. Water Air Soil Pollut 223:4443–4457 [View Article]
    [Google Scholar]
  21. Page R. D. M. ( 2002). Visualizing phylogenetic trees using TreeView. Current Protocols in Bioinformatics, chapter 6, unit 6.2 6.2.1–6.2.15 [View Article]
    [Google Scholar]
  22. Reddy V. S., Saier M. H. Jr ( 2012). BioV Suite–a collection of programs for the study of transport protein evolution. FEBS J 279:2036–2046 [View Article][PubMed]
    [Google Scholar]
  23. Reddy B. L., Saier M. H. Jr ( 2013). Topological and phylogenetic analyses of bacterial holin families and superfamilies. Biochim Biophys Acta 1828:2654–2671 [View Article][PubMed]
    [Google Scholar]
  24. Reddy V. S., Shlykov M. A., Castillo R., Sun E. I., Saier M. H. Jr ( 2012). The major facilitator superfamily (MFS) revisited. FEBS J 279:2022–2035 [View Article][PubMed]
    [Google Scholar]
  25. Ronzone E., Paumet F. ( 2013). Two coiled-coil domains of Chlamydia trachomatis IncA affect membrane fusion events during infection. PLoS ONE 8:e69769 [View Article][PubMed]
    [Google Scholar]
  26. Saier M. H. Jr ( 1994). Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev 58:71–93[PubMed]
    [Google Scholar]
  27. Saier M. H. Jr, Yen M. R., Noto K., Tamang D. G., Elkan C. ( 2009). The Transporter Classification Database: recent advances. Nucleic Acids Res 37:DatabaseD274–D278 [View Article][PubMed]
    [Google Scholar]
  28. Sait M., Livingstone M., Clark E. M., Wheelhouse N., Spalding L., Markey B., Magnino S., Lainson F. A., Myers G. S. A., Longbottom D. ( 2014). Genome sequencing and comparative analysis of three Chlamydia pecorum strains associated with different pathogenic outcomes. BMC Genomics 15:23 [View Article][PubMed]
    [Google Scholar]
  29. Sancak Y., Markhard A. L., Kitami T., Kovács-Bogdán E., Kamer K. J., Udeshi N. D., Carr S. A., Chaudhuri D., Clapham D. E. & other authors ( 2013). EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342:1379–1382 [View Article][PubMed]
    [Google Scholar]
  30. Suchland R. J., Jeffrey B. M., Xia M., Bhatia A., Chu H. G., Rockey D. D., Stamm W. E. ( 2008). Identification of concomitant infection with Chlamydia trachomatis IncA-negative mutant and wild-type strains by genomic, transcriptional, and biological characterizations. Infect Immun 76:5438–5446 [View Article][PubMed]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  32. Tusnády G. E., Simon I. ( 1998). Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506 [View Article][PubMed]
    [Google Scholar]
  33. Umeki S., Satoh T., Ueda S. ( 1985). Alterations in serum pancreatic elastase 1 content in acute and chronic pancreatitis: comparison with alpha-amylase activity. J Lab Clin Med 106:578–582[PubMed]
    [Google Scholar]
  34. Wong F. H., Chen J. S., Reddy V., Day J. L., Shlykov M. A., Wakabayashi S. T., Saier M. H. Jr ( 2012). The amino acid-polyamine-organocation superfamily. J Mol Microbiol Biotechnol 22:105–113 [View Article][PubMed]
    [Google Scholar]
  35. Yamaguchi A., Tamang D. G., Saier M. H. Jr ( 2007). Mercury transport in bacteria. Water Air Soil Pollut 182:219–234 [View Article]
    [Google Scholar]
  36. Yee D. C., Shlykov M. A., Västermark A., Reddy V. S., Arora S., Sun E. I., Saier M. H. Jr ( 2013). The transporter-opsin-G protein-coupled receptor (TOG) superfamily. FEBS J 280:5780–5800 [View Article][PubMed]
    [Google Scholar]
  37. Yen M. R., Choi J., Saier M. H. Jr ( 2009). Bioinformatic analyses of transmembrane transport: novel software for deducing protein phylogeny, topology, and evolution. J Mol Microbiol Biotechnol 17:163–176 [View Article][PubMed]
    [Google Scholar]
  38. Yen M. R., Chen J. S., Marquez J. L., Sun E. I., Saier M. H. ( 2010). Multidrug resistance: phylogenetic characterization of superfamilies of secondary carriers that include drug exporters. Methods Mol Biol 637:47–64 [View Article][PubMed]
    [Google Scholar]
  39. Zhai Y., Saier M. H. Jr ( 2001a). A web-based program for the prediction of average hydropathy, average amphipathicity and average similarity of multiply aligned homologous proteins. J Mol Microbiol Biotechnol 3:285–286[PubMed]
    [Google Scholar]
  40. Zhai Y., Saier M. H. Jr ( 2001b). A web-based program (WHAT) for the simultaneous prediction of hydropathy, amphipathicity, secondary structure and transmembrane topology for a single protein sequence. J Mol Microbiol Biotechnol 3:501–502[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077776-0
Loading
/content/journal/micro/10.1099/mic.0.077776-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error