1887

Abstract

We have referenced and described transposable elements encoding DDE transposases. These elements belonged to nine families of insertion sequences (ISs) and to a family of conjugative transposons (Tn). An overview of the physiological impact of the insertion of all these elements is provided. DDE-transposable elements affect in a number of aspects of its capability to adapt to various environments and modulate the expression of several virulence genes, the genomic region and the genes involved in capsule expression and haemolysin transport being the targets of several different mobile elements. The referenced mobile elements modify behaviour by transferring new gene(s) to its genome, by modifying the expression of neighbouring genes at the integration site or by promoting genomic rearrangements. Transposition of some of these elements occurs , suggesting that by dynamically regulating some adaptation and/or virulence genes, they improve the ability of to reach different niches within its host and ensure the ‘success’ of the infectious process.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077628-0
2014-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1298.html?itemId=/content/journal/micro/10.1099/mic.0.077628-0&mimeType=html&fmt=ahah

References

  1. Achard A., Leclercq R. ( 2007). Characterization of a small mobilizable transposon, MTnSag1, in Streptococcus agalactiae . J Bacteriol 189:4328–4331 [View Article][PubMed]
    [Google Scholar]
  2. Achard A., Villers C., Pichereau V., Leclercq R. ( 2005). New lnu(C) gene conferring resistance to lincomycin by nucleotidylation in Streptococcus agalactiae UCN36. Antimicrob Agents Chemother 49:2716–2719 [View Article][PubMed]
    [Google Scholar]
  3. Al Safadi R., Amor S., Hery-Arnaud G., Spellerberg B., Lanotte P., Mereghetti L., Gannier F., Quentin R., Rosenau A. ( 2010). Enhanced expression of lmb gene encoding laminin-binding protein in Streptococcus agalactiae strains harboring IS1548 in scpB-lmb intergenic region. PLoS ONE 5:e10794 [View Article][PubMed]
    [Google Scholar]
  4. Areschoug T., Stålhammar-Carlemalm M., Karlsson I., Lindahl G. ( 2002). Streptococcal β protein has separate binding sites for human factor H and IgA-Fc. J Biol Chem 277:12642–12648 [View Article][PubMed]
    [Google Scholar]
  5. Beckmann C., Waggoner J. D., Harris T. O., Tamura G. S., Rubens C. E. ( 2002). Identification of novel adhesins from group B streptococci by use of phage display reveals that C5a peptidase mediates fibronectin binding. Infect Immun 70:2869–2876 [View Article][PubMed]
    [Google Scholar]
  6. Beres S. B., Sylva G. L., Barbian K. D., Lei B., Hoff J. S., Mammarella N. D., Liu M. Y., Smoot J. C., Porcella S. F. & other authors ( 2002). Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A 99:10078–10083 [View Article][PubMed]
    [Google Scholar]
  7. Berkmen M. B., Lee C. A., Loveday E. K., Grossman A. D. ( 2010). Polar positioning of a conjugation protein from the integrative and conjugative element ICEBs1 of Bacillus subtilis . J Bacteriol 192:38–45 [View Article][PubMed]
    [Google Scholar]
  8. Bidet P., Brahimi N., Chalas C., Aujard Y., Bingen E. ( 2003). Molecular characterization of serotype III group B-Streptococcus isolates causing neonatal meningitis. J Infect Dis 188:1132–1137 [View Article][PubMed]
    [Google Scholar]
  9. Bohnsack J. F., Takahashi S., Detrick S. R., Pelinka L. R., Hammitt L. L., Aly A. A., Whiting A. A., Adderson E. E. ( 2001). Phylogenetic classification of serotype III group B streptococci on the basis of hylB gene analysis and DNA sequences specific to restriction digest pattern type III-3. J Infect Dis 183:1694–1697 [View Article][PubMed]
    [Google Scholar]
  10. Bohnsack J. F., Whiting A. A., Bradford R. D., Van Frank B. K., Takahashi S., Adderson E. E. ( 2002). Long-range mapping of the Streptococcus agalactiae phylogenetic lineage restriction digest pattern type III-3 reveals clustering of virulence genes. Infect Immun 70:134–139 [View Article][PubMed]
    [Google Scholar]
  11. Bohnsack J. F., Whiting A. A., Martinez G., Jones N., Adderson E. E., Detrick S., Blaschke-Bonkowsky A. J., Bisharat N., Gottschalk M. ( 2004). Serotype III Streptococcus agalactiae from bovine milk and human neonatal infections. Emerg Infect Dis 10:1412–1419 [View Article][PubMed]
    [Google Scholar]
  12. Bohnsack J. F., Whiting A., Gottschalk M., Dunn D. M., Weiss R., Azimi P. H., Philips J. B. III, Weisman L. E., Rhoads G. G., Lin F. Y. ( 2008). Population structure of invasive and colonizing strains of Streptococcus agalactiae from neonates of six U.S. Academic Centers from 1995 to 1999. J Clin Microbiol 46:1285–1291 [View Article][PubMed]
    [Google Scholar]
  13. Brady L. J., Maddocks S. E., Larson M. R., Forsgren N., Persson K., Deivanayagam C. C., Jenkinson H. F. ( 2010). The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol 77:276–286 [View Article][PubMed]
    [Google Scholar]
  14. Brochet M., Couvé E., Glaser P., Guédon G., Payot S. ( 2008a). Integrative conjugative elements and related elements are major contributors to the genome diversity of Streptococcus agalactiae . J Bacteriol 190:6913–6917 [View Article][PubMed]
    [Google Scholar]
  15. Brochet M., Rusniok C., Couvé E., Dramsi S., Poyart C., Trieu-Cuot P., Kunst F., Glaser P. ( 2008b). Shaping a bacterial genome by large chromosomal replacements, the evolutionary history of Streptococcus agalactiae . Proc Natl Acad Sci U S A 105:15961–15966 [View Article][PubMed]
    [Google Scholar]
  16. Brochet M., Da Cunha V., Couvé E., Rusniok C., Trieu-Cuot P., Glaser P. ( 2009). Atypical association of DDE transposition with conjugation specifies a new family of mobile elements. Mol Microbiol 71:948–959 [View Article][PubMed]
    [Google Scholar]
  17. Bröker G., Spellerberg B. ( 2004). Surface proteins of Streptococcus agalactiae and horizontal gene transfer. Int J Med Microbiol 294:169–175 [View Article][PubMed]
    [Google Scholar]
  18. Brüssow H., Canchaya C., Hardt W. D. ( 2004). Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602 [View Article][PubMed]
    [Google Scholar]
  19. Burrus V., Pavlovic G., Decaris B., Guédon G. ( 2002a). The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid 48:77–97 [View Article][PubMed]
    [Google Scholar]
  20. Burrus V., Pavlovic G., Decaris B., Guédon G. ( 2002b). Conjugative transposons: the tip of the iceberg. Mol Microbiol 46:601–610 [View Article][PubMed]
    [Google Scholar]
  21. Casacuberta E., González J. ( 2013). The impact of transposable elements in environmental adaptation. Mol Ecol 22:1503–1517 [View Article][PubMed]
    [Google Scholar]
  22. Casadaban M. J., Chou J., Lemaux P., Tu C. P., Cohen S. N. ( 1981). Tn3: transposition and control. Cold Spring Harb Symp Quant Biol 45:269–273 [View Article][PubMed]
    [Google Scholar]
  23. Cheng Q., Stafslien D., Purushothaman S. S., Cleary P. ( 2002). The group B streptococcal C5a peptidase is both a specific protease and an invasin. Infect Immun 70:2408–2413 [View Article][PubMed]
    [Google Scholar]
  24. Chuzeville S., Puymège A., Madec J. Y., Haenni M., Payot S. ( 2012). Characterization of a new CAMP factor carried by an integrative and conjugative element in Streptococcus agalactiae and spreading in streptococci. PLoS ONE 7:e48918 [View Article][PubMed]
    [Google Scholar]
  25. Craig N. L. ( 1997). Target site selection in transposition. Annu Rev Biochem 66:437–474 [View Article][PubMed]
    [Google Scholar]
  26. Culebras E., Rodríguez-Avial I., Betriu C., Picazo J. J. ( 2005). Differences in the DNA sequence of the translational attenuator of several constitutively expressed erm(A) genes from clinical isolates of Streptococcus agalactiae . J Antimicrob Chemother 56:836–840 [View Article][PubMed]
    [Google Scholar]
  27. Da Cunha V., Guérillot R., Brochet M., Glaser P. ( 2013). Integrative and conjugative elements encoding DDE transposases. Bacterial Integrative Mobile Genetic Elements250–260 Roberts A. P., Mullany P. Austin, TX: Landes Bioscience;
    [Google Scholar]
  28. Danne C., Guérillot R., Glaser P., Trieu-Cuot P., Dramsi S. ( 2013). Construction of isogenic mutants in Streptococcus gallolyticus based on the development of new mobilizable vectors. Res Microbiol 164:973–978 [View Article][PubMed]
    [Google Scholar]
  29. Davies M. R., Shera J., Van Domselaar G. H., Sriprakash K. S., McMillan D. J. ( 2009). A novel integrative conjugative element mediates genetic transfer from group G streptococcus to other β-hemolytic streptococci. J Bacteriol 191:2257–2265 [View Article][PubMed]
    [Google Scholar]
  30. Dintilhac A., Alloing G., Granadel C., Claverys J. P. ( 1997). Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol 25:727–739 [View Article][PubMed]
    [Google Scholar]
  31. Dmitriev A., Yang M., Shakleina E., Tkáciková L., Suvorov A., Mikula I., Yang Y. H. ( 2003). The presence of insertion elements IS861 and IS1548 in group B streptococci. Folia Microbiol (Praha) 48:105–110 [View Article][PubMed]
    [Google Scholar]
  32. Dmitriev A., Shen A., Shen X., Yang Y. ( 2004). ISSa4-based differentiation of Streptococcus agalactiae strains and identification of multiple target sites for ISSa4 insertions. J Bacteriol 186:1106–1109 [View Article][PubMed]
    [Google Scholar]
  33. Dmitriev A., Yang Y. H., Shen A. D., Totolian A. ( 2006). Adjacent location of the bac gene and two-component regulatory system genes within the putative Streptococcus agalactiae pathogenicity island. Folia Microbiol (Praha) 51:229–235 [View Article][PubMed]
    [Google Scholar]
  34. Dodd H. M., Horn N., Gasson M. J. ( 1994). Characterization of IS905, a new multicopy insertion sequence identified in lactococci. J Bacteriol 176:3393–3396[PubMed]
    [Google Scholar]
  35. Edwards M. S., Nizet V., Baker C. J. ( 2011). Group B streptococcal infections. Infectious Diseases of the Fetus and Newborn Infant, 7th edn.419–469 Remington J. S., Klein J. O., Wilson C. B., Nizet V., Maldonado Y. Philadelphia, PA: Elsevier Saunders; [View Article]
    [Google Scholar]
  36. El Zoeiby A., Sanschagrin F., Levesque R. C. ( 2003). Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol 47:1–12 [View Article][PubMed]
    [Google Scholar]
  37. Engleberg N. C., Heath A., Miller A., Rivera C., DiRita V. J. ( 2001). Spontaneous mutations in the CsrRS two-component regulatory system of Streptococcus pyogenes result in enhanced virulence in a murine model of skin and soft tissue infection. J Infect Dis 183:1043–1054 [View Article][PubMed]
    [Google Scholar]
  38. Evans J. J., Bohnsack J. F., Klesius P. H., Whiting A. A., Garcia J. C., Shoemaker C. A., Takahashi S. ( 2008). Phylogenetic relationships among Streptococcus agalactiae isolated from piscine, dolphin, bovine and human sources: a dolphin and piscine lineage associated with a fish epidemic in Kuwait is also associated with human neonatal infections in Japan. J Med Microbiol 57:1369–1376 [View Article][PubMed]
    [Google Scholar]
  39. Farley M. M. ( 2001). Group B streptococcal disease in nonpregnant adults. Clin Infect Dis 33:556–561 [View Article][PubMed]
    [Google Scholar]
  40. Ferretti J. J., McShan W. M., Ajdic D., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N. & other authors ( 2001). Complete genome sequence of an M1 strain of Streptococcus pyogenes . Proc Natl Acad Sci U S A 98:4658–4663 [View Article][PubMed]
    [Google Scholar]
  41. Fléchard M., Gilot P., Héry-Arnaud G., Mereghetti L., Rosenau A. ( 2013a). Analysis and identification of IS1548 insertion targets in Streptococcus agalactiae . FEMS Microbiol Lett 340:65–72 [View Article][PubMed]
    [Google Scholar]
  42. Fléchard M., Rosenau A., Mereghetti L., Gilot P. ( 2013b). Polymerase chain reaction with insertion sequence-specific and -unrelated primers: a new tool for the identification of IS1548 insertion targets in Streptococcus agalactiae . J Microbiol Methods 94:22–24 [View Article][PubMed]
    [Google Scholar]
  43. Franken C., Haase G., Brandt C., Weber-Heynemann J., Martin S., Lämmler C., Podbielski A., Lütticken R., Spellerberg B. ( 2001). Horizontal gene transfer and host specificity of β-haemolytic streptococci: the role of a putative composite transposon containing scpB and lmb . Mol Microbiol 41:925–935 [View Article][PubMed]
    [Google Scholar]
  44. Franken C., Brandt C., Bröker G., Spellerberg B. ( 2004). ISSag1 in streptococcal strains of human and animal origin. Int J Med Microbiol 294:247–254 [View Article][PubMed]
    [Google Scholar]
  45. Frey M. N., Ioppi A. E. E., Bonamigo R. R., Prado G. P. ( 2011). Streptococcus agalactie involved in the etiology of sexually transmitted diseases. An Bras Dermatol 86:1205–1207 [View Article][PubMed]
    [Google Scholar]
  46. Garcia A. F., Abe L. M., Erdem G., Cortez C. L., Kurahara D., Yamaga K. ( 2010). An insert in the covS gene distinguishes a pharyngeal and a blood isolate of Streptococcus pyogenes found in the same individual. Microbiology 156:3085–3095 [View Article][PubMed]
    [Google Scholar]
  47. Goryshin I. Y., Miller J. A., Kil Y. V., Lanzov V. A., Reznikoff W. S. ( 1998). Tn5/IS50 target recognition. Proc Natl Acad Sci U S A 95:10716–10721 [View Article][PubMed]
    [Google Scholar]
  48. Graham M. R., Smoot L. M., Migliaccio C. A., Virtaneva K., Sturdevant D. E., Porcella S. F., Federle M. J., Adams G. J., Scott J. R., Musser J. M. ( 2002). Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A 99:13855–13860 [View Article][PubMed]
    [Google Scholar]
  49. Granlund M., Oberg L., Sellin M., Norgren M. ( 1998). Identification of a novel insertion element, IS1548, in group B streptococci, predominantly in strains causing endocarditis. J Infect Dis 177:967–976 [View Article][PubMed]
    [Google Scholar]
  50. Granlund M., Michel F., Norgren M. ( 2001). Mutually exclusive distribution of IS1548 and GBSi1, an active group II intron identified in human isolates of group B streptococci. J Bacteriol 183:2560–2569 [View Article][PubMed]
    [Google Scholar]
  51. Gravey F., Galopin S., Grall N., Auzou M., Andremont A., Leclercq R., Cattoir V. ( 2013). Lincosamide resistance mediated by lnu(C) (L phenotype) in a Streptococcus anginosus clinical isolate. J Antimicrob Chemother 68:2464–2467 [View Article][PubMed]
    [Google Scholar]
  52. Gryllos I., Grifantini R., Colaprico A., Jiang S., Deforce E., Hakansson A., Telford J. L., Grandi G., Wessels M. R. ( 2007). Mg2+ signalling defines the group A streptococcal CsrRS (CovRS) regulon. Mol Microbiol 65:671–683 [View Article][PubMed]
    [Google Scholar]
  53. Guérillot R., Da Cunha V., Sauvage E., Bouchier C., Glaser P. ( 2013). Modular evolution of TnGBSs, a new family of integrative and conjugative elements associating insertion sequence transposition, plasmid replication, and conjugation for their spreading. J Bacteriol 195:1979–1990 [View Article][PubMed]
    [Google Scholar]
  54. Haenni M., Saras E., Bertin S., Leblond P., Madec J. Y., Payot S. ( 2010). Diversity and mobility of integrative and conjugative elements in bovine isolates of Streptococcus agalactiae, S. dysgalactiae subsp. dysgalactiae, and S. uberis . Appl Environ Microbiol 76:7957–7965 [View Article][PubMed]
    [Google Scholar]
  55. Hall B. G. ( 1998). Activation of the bgl operon by adaptive mutation. Mol Biol Evol 15:1–5 [View Article][PubMed]
    [Google Scholar]
  56. Halling S. M., Kleckner N. ( 1982). A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity. Cell 28:155–163 [View Article][PubMed]
    [Google Scholar]
  57. Heath A., DiRita V. J., Barg N. L., Engleberg N. C. ( 1999). A two-component regulatory system, CsrR-CsrS, represses expression of three Streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect Immun 67:5298–5305[PubMed]
    [Google Scholar]
  58. Héry-Arnaud G., Bruant G., Lanotte P., Brun S., Rosenau A., van der Mee-Marquet N., Quentin R., Mereghetti L. ( 2005). Acquisition of insertion sequences and the GBSi1 intron by Streptococcus agalactiae isolates correlates with the evolution of the species. J Bacteriol 187:6248–6252 [View Article][PubMed]
    [Google Scholar]
  59. Héry-Arnaud G., Bruant G., Lanotte P., Brun S., Picard B., Rosenau A., van der Mee-Marquet N., Rainard P., Quentin R., Mereghetti L. ( 2007). Mobile genetic elements provide evidence for a bovine origin of clonal complex 17 of Streptococcus agalactiae . Appl Environ Microbiol 73:4668–4672 [View Article][PubMed]
    [Google Scholar]
  60. Horaud T., de Céspèdes G., Trieu-Cuot P. ( 1996). Chromosomal gentamicin resistance transposon Tn3706 in Streptococcus agalactiae B128. Antimicrob Agents Chemother 40:1085–1090[PubMed]
    [Google Scholar]
  61. Jourdan-Da Silva N., Antona D., Six C., Georges S., Goulet V., Judlin P., Lévy-Bruhl D. ( 2008). Neonatal group B streptococcus infections in France: incidence from 1997 to 2006 and current prevention practices in maternity wards. Bull Epidemiol Hebd 14:110–113 [CrossRef]
    [Google Scholar]
  62. Kappes R. M., Kempf B., Bremer E. ( 1996). Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J Bacteriol 178:5071–5079[PubMed]
    [Google Scholar]
  63. Kedar G. C., Brown-Driver V., Reyes D. R., Hilgers M. T., Stidham M. A., Shaw K. J., Finn J., Haselbeck R. J. ( 2007). Evaluation of the metS and murB loci for antibiotic discovery using targeted antisense RNA expression analysis in Bacillus anthracis . Antimicrob Agents Chemother 51:1708–1718 [View Article][PubMed]
    [Google Scholar]
  64. King S. J., Allen A. G., Maskell D. J., Dowson C. G., Whatmore A. M. ( 2004). Distribution, genetic diversity, and variable expression of the gene encoding hyaluronate lyase within the Streptococcus suis population. J Bacteriol 186:4740–4747 [View Article][PubMed]
    [Google Scholar]
  65. Kong F., Gowan S., Martin D., James G., Gilbert G. L. ( 2002). Molecular profiles of group B streptococcal surface protein antigen genes: relationship to molecular serotypes. J Clin Microbiol 40:620–626 [View Article][PubMed]
    [Google Scholar]
  66. Kong F., Gidding H. F., Berner R., Gilbert G. L. ( 2006). Streptococcus agalactiae Cβ protein gene (bac) sequence types, based on the repeated region of the cell-wall-spanning domain: relationship to virulence and a proposed standardized nomenclature. J Med Microbiol 55:829–837 [View Article][PubMed]
    [Google Scholar]
  67. Labbate M., Case R. J., Stokes H. W. ( 2009). The integron/gene cassette system: an active player in bacterial adaptation. Methods Mol Biol 532:103–125 [View Article][PubMed]
    [Google Scholar]
  68. Le Bouguénec C., de Cespédès G., Horaud T. ( 1990). Presence of chromosomal elements resembling the composite structure Tn3701 in streptococci. J Bacteriol 172:727–734[PubMed]
    [Google Scholar]
  69. Leclercq R. ( 2002). Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis 34:482–492 [View Article][PubMed]
    [Google Scholar]
  70. Lemire P., Houde M., Segura M. ( 2012). Encapsulated group B Streptococcus modulates dendritic cell functions via lipid rafts and clathrin-mediated endocytosis. Cell Microbiol 14:1707–1719 [View Article][PubMed]
    [Google Scholar]
  71. Li W., Liu L., Chen H., Zhou R. ( 2009). Identification of Streptococcus suis genes preferentially expressed under iron starvation by selective capture of transcribed sequences. FEMS Microbiol Lett 292:123–133 [View Article][PubMed]
    [Google Scholar]
  72. Liu G., Zhang W., Lu C. ( 2012). Complete genome sequence of Streptococcus agalactiae GD201008-001, isolated in China from tilapia with meningoencephalitis. J Bacteriol 194:6653 [View Article][PubMed]
    [Google Scholar]
  73. Llosa M., Gomis-Rüth F. X., Coll M., de la Cruz Fd F. ( 2002). Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol 45:1–8 [View Article][PubMed]
    [Google Scholar]
  74. Loo C. Y., Mitrakul K., Voss I. B., Hughes C. V., Ganeshkumar N. ( 2003). Involvement of the adc operon and manganese homeostasis in Streptococcus gordonii biofilm formation. J Bacteriol 185:2887–2900 [View Article][PubMed]
    [Google Scholar]
  75. López de Felipe F., López P., Magni C., de Mendoza D. ( 1996). Transcriptional activation of the citrate permease P gene of Lactococcus lactis biovar diacetylactis by an insertion sequence-like element present in plasmid pCIT264. Mol Gen Genet 250:428–436 [View Article][PubMed]
    [Google Scholar]
  76. Luan S. L., Granlund M., Norgren M. ( 2003). An inserted DNA fragment with plasmid features is uniquely associated with the presence of the GBSi1 group II intron in Streptococcus agalactiae . Gene 312:305–312 [View Article][PubMed]
    [Google Scholar]
  77. Luan S. L., Granlund M., Sellin M., Lagergård T., Spratt B. G., Norgren M. ( 2005). Multilocus sequence typing of Swedish invasive group B streptococcus isolates indicates a neonatally associated genetic lineage and capsule switching. J Clin Microbiol 43:3727–3733 [View Article][PubMed]
    [Google Scholar]
  78. Maddocks S. E., Wright C. J., Nobbs A. H., Brittan J. L., Franklin L., Strömberg N., Kadioglu A., Jepson M. A., Jenkinson H. F. ( 2011). Streptococcus pyogenes antigen I/II-family polypeptide AspA shows differential ligand-binding properties and mediates biofilm formation. Mol Microbiol 81:1034–1049 [View Article][PubMed]
    [Google Scholar]
  79. Mahillon J., Chandler M. ( 1998). Insertion sequences. Microbiol Mol Biol Rev 62:725–774[PubMed]
    [Google Scholar]
  80. Manning S. D., Neighbors K., Tallman P. A., Gillespie B., Marrs C. F., Borchardt S. M., Baker C. J., Pearlman M. D., Foxman B. ( 2004). Prevalence of group B streptococcus colonization and potential for transmission by casual contact in healthy young men and women. Clin Infect Dis 39:380–388 [View Article][PubMed]
    [Google Scholar]
  81. Maruyama F., Kobata M., Kurokawa K., Nishida K., Sakurai A., Nakano K., Nomura R., Kawabata S., Ooshima T. & other authors ( 2009). Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content. BMC Genomics 10:358 [View Article][PubMed]
    [Google Scholar]
  82. Mashburn-Warren L., Morrison D. A., Federle M. J. ( 2012). The cryptic competence pathway in Streptococcus pyogenes is controlled by a peptide pheromone. J Bacteriol 194:4589–4600 [View Article][PubMed]
    [Google Scholar]
  83. Mathema V. B., Thakuri B. C., Sillanpää M. ( 2011). Bacterial mer operon-mediated detoxification of mercurial compounds: a short review. Arch Microbiol 193:837–844 [View Article][PubMed]
    [Google Scholar]
  84. Metcalf D. S., MacInnes J. I. ( 2007). Differential expression of Haemophilus parasuis genes in response to iron restriction and cerebrospinal fluid. Can J Vet Res 71:181–188[PubMed]
    [Google Scholar]
  85. Musser J. M., Mattingly S. J., Quentin R., Goudeau A., Selander R. K. ( 1989). Identification of a high-virulence clone of type III Streptococcus agalactiae (group B Streptococcus) causing invasive neonatal disease. Proc Natl Acad Sci U S A 86:4731–4735 [View Article][PubMed]
    [Google Scholar]
  86. Nagano N., Nagano Y., Nakano R., Okamoto R., Inoue M. ( 2006). Genetic diversity of the C protein β-antigen gene and its upstream regions within clonally related groups of type Ia and Ib group B streptococci. Microbiology 152:771–778 [View Article][PubMed]
    [Google Scholar]
  87. Nesmelova I. V., Hackett P. B. ( 2010). DDE transposases: structural similarity and diversity. Adv Drug Deliv Rev 62:1187–1195 [View Article][PubMed]
    [Google Scholar]
  88. Notley-McRobb L., Ferenci T. ( 1999). Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations. Environ Microbiol 1:33–43 [View Article][PubMed]
    [Google Scholar]
  89. Ogura M. ( 2011). ZnuABC and ZosA zinc transporters are differently involved in competence development in Bacillus subtilis . J Biochem 150:615–625 [View Article][PubMed]
    [Google Scholar]
  90. Olasz F., Farkas T., Kiss J., Arini A., Arber W. ( 1997). Terminal inverted repeats of insertion sequence IS30 serve as targets for transposition. J Bacteriol 179:7551–7558[PubMed]
    [Google Scholar]
  91. Osaki M., Takamatsu D., Shimoji Y., Sekizaki T. ( 2002). Characterization of Streptococcus suis genes encoding proteins homologous to sortase of gram-positive bacteria. J Bacteriol 184:971–982 [View Article][PubMed]
    [Google Scholar]
  92. Padan E., Bibi E., Ito M., Krulwich T. A. ( 2005). Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88 [View Article][PubMed]
    [Google Scholar]
  93. Park S. E., Jiang S., Wessels M. R. ( 2012). CsrRS and environmental pH regulate group B streptococcus adherence to human epithelial cells and extracellular matrix. Infect Immun 80:3975–3984 [View Article][PubMed]
    [Google Scholar]
  94. Parker L. L., Hall B. G. ( 1990). Mechanisms of activation of the cryptic cel operon of Escherichia coli K12. Genetics 124:473–482[PubMed]
    [Google Scholar]
  95. Phares C. R., Lynfield R., Farley M. M., Mohle-Boetani J., Harrison L. H., Petit S., Craig A. S., Schaffner W., Zansky S. M. & other authors ( 2008). Epidemiology of invasive group B streptococcal disease in the United States, 1999-2005. JAMA 299:2056–2065 [View Article][PubMed]
    [Google Scholar]
  96. Polissi A., Pontiggia A., Feger G., Altieri M., Mottl H., Ferrari L., Simon D. ( 1998). Large-scale identification of virulence genes from Streptococcus pneumoniae . Infect Immun 66:5620–5629[PubMed]
    [Google Scholar]
  97. Poyart C., Jardy L., Quesne G., Berche P., Trieu-Cuot P. ( 2003). Genetic basis of antibiotic resistance in Streptococcus agalactiae strains isolated in a French hospital. Antimicrob Agents Chemother 47:794–797 [View Article][PubMed]
    [Google Scholar]
  98. Pritchard D. G., Lin B. ( 1993). Group B streptococcal neuraminidase is actually a hyaluronidase. Infect Immun 61:3234–3239[PubMed]
    [Google Scholar]
  99. Puymège A., Bertin S., Chuzeville S., Guédon G., Payot S. ( 2013). Conjugative transfer and cis-mobilization of a genomic island by an integrative and conjugative element of Streptococcus agalactiae . J Bacteriol 195:1142–1151 [View Article][PubMed]
    [Google Scholar]
  100. Ragunathan P., Spellerberg B., Ponnuraj K. ( 2009). Structure of laminin-binding adhesin (Lmb) from Streptococcus agalactiae . Acta Crystallogr D Biol Crystallogr 65:1262–1269 [View Article][PubMed]
    [Google Scholar]
  101. Ragunathan P., Sridaran D., Weigel A., Shabayek S., Spellerberg B., Ponnuraj K. ( 2013). Metal binding is critical for the folding and function of laminin binding protein, Lmb of Streptococcus agalactiae . PLoS ONE 8:e67517 [View Article][PubMed]
    [Google Scholar]
  102. Rajeev L., Salyers A. A., Gardner J. F. ( 2006). Characterization of the integrase of NBU1, a Bacteroides mobilizable transposon. Mol Microbiol 61:978–990 [View Article][PubMed]
    [Google Scholar]
  103. Rajeev L., Malanowska K., Gardner J. F. ( 2009). Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev 73:300–309 [View Article][PubMed]
    [Google Scholar]
  104. Ramaswamy S. V., Ferrieri P., Madoff L. C., Flores A. E., Kumar N., Tettelin H., Paoletti L. C. ( 2006). Identification of novel cps locus polymorphisms in nontypable group B Streptococcus . J Med Microbiol 55:775–783 [View Article][PubMed]
    [Google Scholar]
  105. Rato M. G., Bexiga R., Florindo C., Cavaco L. M., Vilela C. L., Santos-Sanches I. ( 2013). Antimicrobial resistance and molecular epidemiology of streptococci from bovine mastitis. Vet Microbiol 161:286–294 [View Article][PubMed]
    [Google Scholar]
  106. Reimmann C., Haas D. ( 1987). Mode of replicon fusion mediated by the duplicated insertion sequence IS21 in Escherichia coli . Genetics 115:619–625[PubMed]
    [Google Scholar]
  107. Richards V. P., Lang P., Pavinski Bitar P. D., Lefébure T., Schukken Y. H., Zadoks R. N., Stanhope M. J. ( 2011). Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae . Infect Genet Evol 11:1263–1275 [View Article][PubMed]
    [Google Scholar]
  108. Rojo P., Araya P., Martínez T M. A., Hormazábal J. C., Maldonado A., Fernández J. ( 2008). [Molecular characterization of Chilean isolates of Streptococcus agalactiae]. Rev Med Chil 136:606–612[PubMed] [CrossRef]
    [Google Scholar]
  109. Rolland K., Marois C., Siquier V., Cattier B., Quentin R. ( 1999). Genetic features of Streptococcus agalactiae strains causing severe neonatal infections, as revealed by pulsed-field gel electrophoresis and hylB gene analysis. J Clin Microbiol 37:1892–1898[PubMed]
    [Google Scholar]
  110. Rubens C. E., Heggen L. M., Kuypers J. M. ( 1989). IS861, a group B streptococcal insertion sequence related to IS150 and IS3 of Escherichia coli . J Bacteriol 171:5531–5535[PubMed]
    [Google Scholar]
  111. Safi H., Barnes P. F., Lakey D. L., Shams H., Samten B., Vankayalapati R., Howard S. T. ( 2004). IS6110 functions as a mobile, monocyte-activated promoter in Mycobacterium tuberculosis . Mol Microbiol 52:999–1012 [View Article][PubMed]
    [Google Scholar]
  112. Sánchez-Beato A. R., García E., López R., García J. L. ( 1997). Identification and characterization of IS1381, a new insertion sequence in Streptococcus pneumoniae . J Bacteriol 179:2459–2463[PubMed]
    [Google Scholar]
  113. Santi I., Scarselli M., Mariani M., Pezzicoli A., Masignani V., Taddei A., Grandi G., Telford J. L., Soriani M. ( 2007). BibA: a novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood. Mol Microbiol 63:754–767 [View Article][PubMed]
    [Google Scholar]
  114. Sellin M., Håkansson S., Norgren M. ( 1995). Phase-shift of polysaccharide capsule expression in group B streptococci, type III. Microb Pathog 18:401–415 [View Article][PubMed]
    [Google Scholar]
  115. Sellin M., Olofsson C., Håkansson S., Norgren M. ( 2000). Genotyping of the capsule gene cluster (cps) in nontypeable group B streptococci reveals two major cps allelic variants of serotypes III and VII. J Clin Microbiol 38:3420–3428[PubMed]
    [Google Scholar]
  116. Sengstag C., Iida S., Hiestand-Nauer R., Arber W. ( 1986). Terminal inverted repeats of prokaryotic transposable element IS186 which can generate duplications of variable length at an identical target sequence. Gene 49:153–156 [View Article][PubMed]
    [Google Scholar]
  117. Shakleina E., Dmitriev A., Tkacikova L., Suvorov A., Mikula I., Totolian A. ( 2004). Presence of insertion sequences (IS elements) in group B streptococci of bovine origin. Indian J Med Res 119:Suppl.242–246[PubMed]
    [Google Scholar]
  118. Sigge A., Schmid M., Mauerer S., Spellerberg B. ( 2008). Heterogeneity of hemolysin expression during neonatal Streptococcus agalactiae sepsis. J Clin Microbiol 46:807–809 [View Article][PubMed]
    [Google Scholar]
  119. Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M. ( 2006). ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36 [View Article][PubMed]
    [Google Scholar]
  120. Siguier P., Gagnevin L., Chandler M. ( 2009). The new IS1595 family, its relation to IS1 and the frontier between insertion sequences and transposons. Res Microbiol 160:232–241 [View Article][PubMed]
    [Google Scholar]
  121. Soto C. Y., Menéndez M. C., Pérez E., Samper S., Gómez A. B., García M. J., Martín C. ( 2004). IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J Clin Microbiol 42:212–219 [View Article][PubMed]
    [Google Scholar]
  122. Spellerberg B. ( 2000a). Pathogenesis of neonatal Streptococcus agalactiae infections. Microbes Infect 2:1733–1742 [View Article][PubMed]
    [Google Scholar]
  123. Spellerberg B., Pohl B., Haase G., Martin S., Weber-Heynemann J., Lütticken R. ( 1999a). Identification of genetic determinants for the hemolytic activity of Streptococcus agalactiae by ISS1 transposition. J Bacteriol 181:3212–3219[PubMed]
    [Google Scholar]
  124. Spellerberg B., Rozdzinski E., Martin S., Weber-Heynemann J., Schnitzler N., Lütticken R., Podbielski A. ( 1999b). Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. Infect Immun 67:871–878[PubMed]
    [Google Scholar]
  125. Spellerberg B., Martin S., Franken C., Berner R., Lütticken R. ( 2000b). Identification of a novel insertion sequence element in Streptococcus agalactiae . Gene 241:51–56 [View Article][PubMed]
    [Google Scholar]
  126. Stapleton P., Pike R., Mullany P., Lucas V., Roberts G., Rowbury R., Wilson M., Richards H. ( 2004). Mercuric resistance genes in gram-positive oral bacteria. FEMS Microbiol Lett 236:213–220 [View Article][PubMed]
    [Google Scholar]
  127. Sukhnanand S., Dogan B., Ayodele M. O., Zadoks R. N., Craver M. P., Dumas N. B., Schukken Y. H., Boor K. J., Wiedmann M. ( 2005). Molecular subtyping and characterization of bovine and human Streptococcus agalactiae isolates. J Clin Microbiol 43:1177–1186 [View Article][PubMed]
    [Google Scholar]
  128. Takahashi S., Detrick S., Whiting A. A., Blaschke-Bonkowksy A. J., Aoyagi Y., Adderson E. E., Bohnsack J. F. ( 2002). Correlation of phylogenetic lineages of group B Streptococci, identified by analysis of restriction-digestion patterns of genomic DNA, with infB alleles and mobile genetic elements. J Infect Dis 186:1034–1038 [View Article][PubMed]
    [Google Scholar]
  129. Tamura G. S., Herndon M., Przekwas J., Rubens C. E., Ferrieri P., Hillier S. L. ( 2000). Analysis of restriction fragment length polymorphisms of the insertion sequence IS1381 in group B streptococci. J Infect Dis 181:364–368 [View Article][PubMed]
    [Google Scholar]
  130. Tenenbaum T., Spellerberg B., Adam R., Vogel M., Kim K. S., Schroten H. ( 2007). Streptococcus agalactiae invasion of human brain microvascular endothelial cells is promoted by the laminin-binding protein Lmb. Microbes Infect 9:714–720 [View Article][PubMed]
    [Google Scholar]
  131. Tenzen T., Ohtsubo E. ( 1991). Preferential transposition of an IS630-associated composite transposon to TA in the 5′-CTAG-3′ sequence. J Bacteriol 173:6207–6212[PubMed]
    [Google Scholar]
  132. Tettelin H., Masignani V., Cieslewicz M. J., Eisen J. A., Peterson S., Wessels M. R., Paulsen I. T., Nelson K. E., Margarit I. & other authors ( 2002). Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae . Proc Natl Acad Sci U S A 99:12391–12396 [View Article][PubMed]
    [Google Scholar]
  133. Tettelin H., Masignani V., Cieslewicz M. J., Donati C., Medini D., Ward N. L., Angiuoli S. V., Crabtree J., Jones A. L. & other authors ( 2005). Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102:13950–13955 [View Article][PubMed]
    [Google Scholar]
  134. Toro N., Jiménez-Zurdo J. I., García-Rodríguez F. M. ( 2007). Bacterial group II introns: not just splicing. FEMS Microbiol Rev 31:342–358 [View Article][PubMed]
    [Google Scholar]
  135. Treviño J., Perez N., Ramirez-Peña E., Liu Z., Shelburne S. A. III, Musser J. M., Sumby P. ( 2009). CovS simultaneously activates and inhibits the CovR-mediated repression of distinct subsets of group A Streptococcus virulence factor-encoding genes. Infect Immun 77:3141–3149 [View Article][PubMed]
    [Google Scholar]
  136. van der Mee-Marquet N., Fourny L., Arnault L., Domelier A. S., Salloum M., Lartigue M. F., Quentin R. ( 2008). Molecular characterization of human-colonizing Streptococcus agalactiae strains isolated from throat, skin, anal margin, and genital body sites. J Clin Microbiol 46:2906–2911 [View Article][PubMed]
    [Google Scholar]
  137. van der Mee-Marquet N., Domelier A. S., Salloum M., Violette J., Arnault L., Gaillard N., Bind J. L., Lartigue M. F., Quentin R. Bloodstream Infection Study Group of the Reseau des Hygienistes de la Region Centre ( 2009). Molecular characterization of temporally and geographically matched Streptococcus agalactiae strains isolated from food products and bloodstream infections. Foodborne Pathog Dis 6:1177–1183 [View Article][PubMed]
    [Google Scholar]
  138. Vasi J., Lindberg M., Guss B. ( 2000). A novel IS-like element frequently inserted in a putative virulence regulator in bovine mastitis isolates of Streptococcus dysgalactiae . Plasmid 44:220–230 [View Article][PubMed]
    [Google Scholar]
  139. Waditee R., Hibino T., Nakamura T., Incharoensakdi A., Takabe T. ( 2002). Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc Natl Acad Sci U S A 99:4109–4114 [View Article][PubMed]
    [Google Scholar]
  140. Wallden K., Rivera-Calzada A., Waksman G. ( 2010). Type IV secretion systems: versatility and diversity in function. Cell Microbiol 12:1203–1212 [View Article][PubMed]
    [Google Scholar]
  141. Wang H., Smith M. C., Mullany P. ( 2006). The conjugative transposon Tn5397 has a strong preference for integration into its Clostridium difficile target site. J Bacteriol 188:4871–4878 [View Article][PubMed]
    [Google Scholar]
  142. Wery J., Hidayat B., Kieboom J., de Bont J. A. ( 2001). An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress. J Biol Chem 276:5700–5706 [View Article][PubMed]
    [Google Scholar]
  143. Wiedenbeck J., Cohan F. M. ( 2011). Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev 35:957–976 [View Article][PubMed]
    [Google Scholar]
  144. Wozniak R. A., Waldor M. K. ( 2010). Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 8:552–563 [View Article][PubMed]
    [Google Scholar]
  145. Yildirim A. O., Lämmler Ch., Weiß R. ( 2002a). Identification and characterization of Streptococcus agalactiae isolated from horses. Vet Microbiol 85:31–35 [View Article][PubMed]
    [Google Scholar]
  146. Yildirim A. O., Lämmler C., Weiß R., Kopp P. ( 2002b). Pheno- and genotypic properties of streptococci of serological group B of canine and feline origin. FEMS Microbiol Lett 212:187–192 [View Article][PubMed]
    [Google Scholar]
  147. Zerbib D., Gamas P., Chandler M., Prentki P., Bass S., Galas D. ( 1985). Specificity of insertion of IS1 . J Mol Biol 185:517–524 [View Article][PubMed]
    [Google Scholar]
  148. Zuleta L. F., Italiani V. C., Marques M. V. ( 2003). Isolation and characterization of NaCl-sensitive mutants of Caulobacter crescentus . Appl Environ Microbiol 69:3029–3035 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077628-0
Loading
/content/journal/micro/10.1099/mic.0.077628-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error