1887

Abstract

We have referenced and described transposable elements encoding DDE transposases. These elements belonged to nine families of insertion sequences (ISs) and to a family of conjugative transposons (Tn). An overview of the physiological impact of the insertion of all these elements is provided. DDE-transposable elements affect in a number of aspects of its capability to adapt to various environments and modulate the expression of several virulence genes, the genomic region and the genes involved in capsule expression and haemolysin transport being the targets of several different mobile elements. The referenced mobile elements modify behaviour by transferring new gene(s) to its genome, by modifying the expression of neighbouring genes at the integration site or by promoting genomic rearrangements. Transposition of some of these elements occurs , suggesting that by dynamically regulating some adaptation and/or virulence genes, they improve the ability of to reach different niches within its host and ensure the ‘success’ of the infectious process.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077628-0
2014-07-01
2020-05-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1298.html?itemId=/content/journal/micro/10.1099/mic.0.077628-0&mimeType=html&fmt=ahah

References

  1. Achard A., Leclercq R.. ( 2007;). Characterization of a small mobilizable transposon, MTnSag1, in Streptococcus agalactiae . J Bacteriol189:4328–4331 [CrossRef][PubMed]
    [Google Scholar]
  2. Achard A., Villers C., Pichereau V., Leclercq R.. ( 2005;). New lnu(C) gene conferring resistance to lincomycin by nucleotidylation in Streptococcus agalactiae UCN36. Antimicrob Agents Chemother49:2716–2719 [CrossRef][PubMed]
    [Google Scholar]
  3. Al Safadi R., Amor S., Hery-Arnaud G., Spellerberg B., Lanotte P., Mereghetti L., Gannier F., Quentin R., Rosenau A.. ( 2010;). Enhanced expression of lmb gene encoding laminin-binding protein in Streptococcus agalactiae strains harboring IS1548 in scpB-lmb intergenic region. PLoS ONE5:e10794 [CrossRef][PubMed]
    [Google Scholar]
  4. Areschoug T., Stålhammar-Carlemalm M., Karlsson I., Lindahl G.. ( 2002;). Streptococcal β protein has separate binding sites for human factor H and IgA-Fc. J Biol Chem277:12642–12648 [CrossRef][PubMed]
    [Google Scholar]
  5. Beckmann C., Waggoner J. D., Harris T. O., Tamura G. S., Rubens C. E.. ( 2002;). Identification of novel adhesins from group B streptococci by use of phage display reveals that C5a peptidase mediates fibronectin binding. Infect Immun70:2869–2876 [CrossRef][PubMed]
    [Google Scholar]
  6. Beres S. B., Sylva G. L., Barbian K. D., Lei B., Hoff J. S., Mammarella N. D., Liu M. Y., Smoot J. C., Porcella S. F.. & other authors ( 2002;). Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc Natl Acad Sci U S A99:10078–10083 [CrossRef][PubMed]
    [Google Scholar]
  7. Berkmen M. B., Lee C. A., Loveday E. K., Grossman A. D.. ( 2010;). Polar positioning of a conjugation protein from the integrative and conjugative element ICEBs1 of Bacillus subtilis . J Bacteriol192:38–45 [CrossRef][PubMed]
    [Google Scholar]
  8. Bidet P., Brahimi N., Chalas C., Aujard Y., Bingen E.. ( 2003;). Molecular characterization of serotype III group B-Streptococcus isolates causing neonatal meningitis. J Infect Dis188:1132–1137 [CrossRef][PubMed]
    [Google Scholar]
  9. Bohnsack J. F., Takahashi S., Detrick S. R., Pelinka L. R., Hammitt L. L., Aly A. A., Whiting A. A., Adderson E. E.. ( 2001;). Phylogenetic classification of serotype III group B streptococci on the basis of hylB gene analysis and DNA sequences specific to restriction digest pattern type III-3. J Infect Dis183:1694–1697 [CrossRef][PubMed]
    [Google Scholar]
  10. Bohnsack J. F., Whiting A. A., Bradford R. D., Van Frank B. K., Takahashi S., Adderson E. E.. ( 2002;). Long-range mapping of the Streptococcus agalactiae phylogenetic lineage restriction digest pattern type III-3 reveals clustering of virulence genes. Infect Immun70:134–139 [CrossRef][PubMed]
    [Google Scholar]
  11. Bohnsack J. F., Whiting A. A., Martinez G., Jones N., Adderson E. E., Detrick S., Blaschke-Bonkowsky A. J., Bisharat N., Gottschalk M.. ( 2004;). Serotype III Streptococcus agalactiae from bovine milk and human neonatal infections. Emerg Infect Dis10:1412–1419 [CrossRef][PubMed]
    [Google Scholar]
  12. Bohnsack J. F., Whiting A., Gottschalk M., Dunn D. M., Weiss R., Azimi P. H., Philips J. B. III, Weisman L. E., Rhoads G. G., Lin F. Y.. ( 2008;). Population structure of invasive and colonizing strains of Streptococcus agalactiae from neonates of six U.S. Academic Centers from 1995 to 1999. J Clin Microbiol46:1285–1291 [CrossRef][PubMed]
    [Google Scholar]
  13. Brady L. J., Maddocks S. E., Larson M. R., Forsgren N., Persson K., Deivanayagam C. C., Jenkinson H. F.. ( 2010;). The changing faces of Streptococcus antigen I/II polypeptide family adhesins. Mol Microbiol77:276–286 [CrossRef][PubMed]
    [Google Scholar]
  14. Brochet M., Couvé E., Glaser P., Guédon G., Payot S.. ( 2008a;). Integrative conjugative elements and related elements are major contributors to the genome diversity of Streptococcus agalactiae . J Bacteriol190:6913–6917 [CrossRef][PubMed]
    [Google Scholar]
  15. Brochet M., Rusniok C., Couvé E., Dramsi S., Poyart C., Trieu-Cuot P., Kunst F., Glaser P.. ( 2008b;). Shaping a bacterial genome by large chromosomal replacements, the evolutionary history of Streptococcus agalactiae . Proc Natl Acad Sci U S A105:15961–15966 [CrossRef][PubMed]
    [Google Scholar]
  16. Brochet M., Da Cunha V., Couvé E., Rusniok C., Trieu-Cuot P., Glaser P.. ( 2009;). Atypical association of DDE transposition with conjugation specifies a new family of mobile elements. Mol Microbiol71:948–959 [CrossRef][PubMed]
    [Google Scholar]
  17. Bröker G., Spellerberg B.. ( 2004;). Surface proteins of Streptococcus agalactiae and horizontal gene transfer. Int J Med Microbiol294:169–175 [CrossRef][PubMed]
    [Google Scholar]
  18. Brüssow H., Canchaya C., Hardt W. D.. ( 2004;). Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev68:560–602 [CrossRef][PubMed]
    [Google Scholar]
  19. Burrus V., Pavlovic G., Decaris B., Guédon G.. ( 2002a;). The ICESt1 element of Streptococcus thermophilus belongs to a large family of integrative and conjugative elements that exchange modules and change their specificity of integration. Plasmid48:77–97 [CrossRef][PubMed]
    [Google Scholar]
  20. Burrus V., Pavlovic G., Decaris B., Guédon G.. ( 2002b;). Conjugative transposons: the tip of the iceberg. Mol Microbiol46:601–610 [CrossRef][PubMed]
    [Google Scholar]
  21. Casacuberta E., González J.. ( 2013;). The impact of transposable elements in environmental adaptation. Mol Ecol22:1503–1517 [CrossRef][PubMed]
    [Google Scholar]
  22. Casadaban M. J., Chou J., Lemaux P., Tu C. P., Cohen S. N.. ( 1981;). Tn3: transposition and control. Cold Spring Harb Symp Quant Biol45:269–273 [CrossRef][PubMed]
    [Google Scholar]
  23. Cheng Q., Stafslien D., Purushothaman S. S., Cleary P.. ( 2002;). The group B streptococcal C5a peptidase is both a specific protease and an invasin. Infect Immun70:2408–2413 [CrossRef][PubMed]
    [Google Scholar]
  24. Chuzeville S., Puymège A., Madec J. Y., Haenni M., Payot S.. ( 2012;). Characterization of a new CAMP factor carried by an integrative and conjugative element in Streptococcus agalactiae and spreading in streptococci. PLoS ONE7:e48918 [CrossRef][PubMed]
    [Google Scholar]
  25. Craig N. L.. ( 1997;). Target site selection in transposition. Annu Rev Biochem66:437–474 [CrossRef][PubMed]
    [Google Scholar]
  26. Culebras E., Rodríguez-Avial I., Betriu C., Picazo J. J.. ( 2005;). Differences in the DNA sequence of the translational attenuator of several constitutively expressed erm(A) genes from clinical isolates of Streptococcus agalactiae . J Antimicrob Chemother56:836–840 [CrossRef][PubMed]
    [Google Scholar]
  27. Da Cunha V., Guérillot R., Brochet M., Glaser P.. ( 2013;). Integrative and conjugative elements encoding DDE transposases. Bacterial Integrative Mobile Genetic Elements250–260 Roberts A. P., Mullany P.. Austin, TX: Landes Bioscience;
    [Google Scholar]
  28. Danne C., Guérillot R., Glaser P., Trieu-Cuot P., Dramsi S.. ( 2013;). Construction of isogenic mutants in Streptococcus gallolyticus based on the development of new mobilizable vectors. Res Microbiol164:973–978 [CrossRef][PubMed]
    [Google Scholar]
  29. Davies M. R., Shera J., Van Domselaar G. H., Sriprakash K. S., McMillan D. J.. ( 2009;). A novel integrative conjugative element mediates genetic transfer from group G streptococcus to other β-hemolytic streptococci. J Bacteriol191:2257–2265 [CrossRef][PubMed]
    [Google Scholar]
  30. Dintilhac A., Alloing G., Granadel C., Claverys J. P.. ( 1997;). Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol25:727–739 [CrossRef][PubMed]
    [Google Scholar]
  31. Dmitriev A., Yang M., Shakleina E., Tkáciková L., Suvorov A., Mikula I., Yang Y. H.. ( 2003;). The presence of insertion elements IS861 and IS1548 in group B streptococci. Folia Microbiol (Praha)48:105–110 [CrossRef][PubMed]
    [Google Scholar]
  32. Dmitriev A., Shen A., Shen X., Yang Y.. ( 2004;). ISSa4-based differentiation of Streptococcus agalactiae strains and identification of multiple target sites for ISSa4 insertions. J Bacteriol186:1106–1109 [CrossRef][PubMed]
    [Google Scholar]
  33. Dmitriev A., Yang Y. H., Shen A. D., Totolian A.. ( 2006;). Adjacent location of the bac gene and two-component regulatory system genes within the putative Streptococcus agalactiae pathogenicity island. Folia Microbiol (Praha)51:229–235 [CrossRef][PubMed]
    [Google Scholar]
  34. Dodd H. M., Horn N., Gasson M. J.. ( 1994;). Characterization of IS905, a new multicopy insertion sequence identified in lactococci. J Bacteriol176:3393–3396[PubMed]
    [Google Scholar]
  35. Edwards M. S., Nizet V., Baker C. J.. ( 2011;). Group B streptococcal infections. Infectious Diseases of the Fetus and Newborn Infant, 7th edn.419–469 Remington J. S., Klein J. O., Wilson C. B., Nizet V., Maldonado Y.. Philadelphia, PA: Elsevier Saunders; [CrossRef]
    [Google Scholar]
  36. El Zoeiby A., Sanschagrin F., Levesque R. C.. ( 2003;). Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol47:1–12 [CrossRef][PubMed]
    [Google Scholar]
  37. Engleberg N. C., Heath A., Miller A., Rivera C., DiRita V. J.. ( 2001;). Spontaneous mutations in the CsrRS two-component regulatory system of Streptococcus pyogenes result in enhanced virulence in a murine model of skin and soft tissue infection. J Infect Dis183:1043–1054 [CrossRef][PubMed]
    [Google Scholar]
  38. Evans J. J., Bohnsack J. F., Klesius P. H., Whiting A. A., Garcia J. C., Shoemaker C. A., Takahashi S.. ( 2008;). Phylogenetic relationships among Streptococcus agalactiae isolated from piscine, dolphin, bovine and human sources: a dolphin and piscine lineage associated with a fish epidemic in Kuwait is also associated with human neonatal infections in Japan. J Med Microbiol57:1369–1376 [CrossRef][PubMed]
    [Google Scholar]
  39. Farley M. M.. ( 2001;). Group B streptococcal disease in nonpregnant adults. Clin Infect Dis33:556–561 [CrossRef][PubMed]
    [Google Scholar]
  40. Ferretti J. J., McShan W. M., Ajdic D., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N.. & other authors ( 2001;). Complete genome sequence of an M1 strain of Streptococcus pyogenes . Proc Natl Acad Sci U S A98:4658–4663 [CrossRef][PubMed]
    [Google Scholar]
  41. Fléchard M., Gilot P., Héry-Arnaud G., Mereghetti L., Rosenau A.. ( 2013a;). Analysis and identification of IS1548 insertion targets in Streptococcus agalactiae . FEMS Microbiol Lett340:65–72 [CrossRef][PubMed]
    [Google Scholar]
  42. Fléchard M., Rosenau A., Mereghetti L., Gilot P.. ( 2013b;). Polymerase chain reaction with insertion sequence-specific and -unrelated primers: a new tool for the identification of IS1548 insertion targets in Streptococcus agalactiae . J Microbiol Methods94:22–24 [CrossRef][PubMed]
    [Google Scholar]
  43. Franken C., Haase G., Brandt C., Weber-Heynemann J., Martin S., Lämmler C., Podbielski A., Lütticken R., Spellerberg B.. ( 2001;). Horizontal gene transfer and host specificity of β-haemolytic streptococci: the role of a putative composite transposon containing scpB and lmb . Mol Microbiol41:925–935 [CrossRef][PubMed]
    [Google Scholar]
  44. Franken C., Brandt C., Bröker G., Spellerberg B.. ( 2004;). ISSag1 in streptococcal strains of human and animal origin. Int J Med Microbiol294:247–254 [CrossRef][PubMed]
    [Google Scholar]
  45. Frey M. N., Ioppi A. E. E., Bonamigo R. R., Prado G. P.. ( 2011;). Streptococcus agalactie involved in the etiology of sexually transmitted diseases. An Bras Dermatol86:1205–1207 [CrossRef][PubMed]
    [Google Scholar]
  46. Garcia A. F., Abe L. M., Erdem G., Cortez C. L., Kurahara D., Yamaga K.. ( 2010;). An insert in the covS gene distinguishes a pharyngeal and a blood isolate of Streptococcus pyogenes found in the same individual. Microbiology156:3085–3095 [CrossRef][PubMed]
    [Google Scholar]
  47. Goryshin I. Y., Miller J. A., Kil Y. V., Lanzov V. A., Reznikoff W. S.. ( 1998;). Tn5/IS50 target recognition. Proc Natl Acad Sci U S A95:10716–10721 [CrossRef][PubMed]
    [Google Scholar]
  48. Graham M. R., Smoot L. M., Migliaccio C. A., Virtaneva K., Sturdevant D. E., Porcella S. F., Federle M. J., Adams G. J., Scott J. R., Musser J. M.. ( 2002;). Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A99:13855–13860 [CrossRef][PubMed]
    [Google Scholar]
  49. Granlund M., Oberg L., Sellin M., Norgren M.. ( 1998;). Identification of a novel insertion element, IS1548, in group B streptococci, predominantly in strains causing endocarditis. J Infect Dis177:967–976 [CrossRef][PubMed]
    [Google Scholar]
  50. Granlund M., Michel F., Norgren M.. ( 2001;). Mutually exclusive distribution of IS1548 and GBSi1, an active group II intron identified in human isolates of group B streptococci. J Bacteriol183:2560–2569 [CrossRef][PubMed]
    [Google Scholar]
  51. Gravey F., Galopin S., Grall N., Auzou M., Andremont A., Leclercq R., Cattoir V.. ( 2013;). Lincosamide resistance mediated by lnu(C) (L phenotype) in a Streptococcus anginosus clinical isolate. J Antimicrob Chemother68:2464–2467 [CrossRef][PubMed]
    [Google Scholar]
  52. Gryllos I., Grifantini R., Colaprico A., Jiang S., Deforce E., Hakansson A., Telford J. L., Grandi G., Wessels M. R.. ( 2007;). Mg2+ signalling defines the group A streptococcal CsrRS (CovRS) regulon. Mol Microbiol65:671–683 [CrossRef][PubMed]
    [Google Scholar]
  53. Guérillot R., Da Cunha V., Sauvage E., Bouchier C., Glaser P.. ( 2013;). Modular evolution of TnGBSs, a new family of integrative and conjugative elements associating insertion sequence transposition, plasmid replication, and conjugation for their spreading. J Bacteriol195:1979–1990 [CrossRef][PubMed]
    [Google Scholar]
  54. Haenni M., Saras E., Bertin S., Leblond P., Madec J. Y., Payot S.. ( 2010;). Diversity and mobility of integrative and conjugative elements in bovine isolates of Streptococcus agalactiae, S. dysgalactiae subsp. dysgalactiae, and S. uberis . Appl Environ Microbiol76:7957–7965 [CrossRef][PubMed]
    [Google Scholar]
  55. Hall B. G.. ( 1998;). Activation of the bgl operon by adaptive mutation. Mol Biol Evol15:1–5 [CrossRef][PubMed]
    [Google Scholar]
  56. Halling S. M., Kleckner N.. ( 1982;). A symmetrical six-base-pair target site sequence determines Tn10 insertion specificity. Cell28:155–163 [CrossRef][PubMed]
    [Google Scholar]
  57. Heath A., DiRita V. J., Barg N. L., Engleberg N. C.. ( 1999;). A two-component regulatory system, CsrR-CsrS, represses expression of three Streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect Immun67:5298–5305[PubMed]
    [Google Scholar]
  58. Héry-Arnaud G., Bruant G., Lanotte P., Brun S., Rosenau A., van der Mee-Marquet N., Quentin R., Mereghetti L.. ( 2005;). Acquisition of insertion sequences and the GBSi1 intron by Streptococcus agalactiae isolates correlates with the evolution of the species. J Bacteriol187:6248–6252 [CrossRef][PubMed]
    [Google Scholar]
  59. Héry-Arnaud G., Bruant G., Lanotte P., Brun S., Picard B., Rosenau A., van der Mee-Marquet N., Rainard P., Quentin R., Mereghetti L.. ( 2007;). Mobile genetic elements provide evidence for a bovine origin of clonal complex 17 of Streptococcus agalactiae . Appl Environ Microbiol73:4668–4672 [CrossRef][PubMed]
    [Google Scholar]
  60. Horaud T., de Céspèdes G., Trieu-Cuot P.. ( 1996;). Chromosomal gentamicin resistance transposon Tn3706 in Streptococcus agalactiae B128. Antimicrob Agents Chemother40:1085–1090[PubMed]
    [Google Scholar]
  61. Jourdan-Da Silva N., Antona D., Six C., Georges S., Goulet V., Judlin P., Lévy-Bruhl D.. ( 2008;). Neonatal group B streptococcus infections in France: incidence from 1997 to 2006 and current prevention practices in maternity wards. Bull Epidemiol Hebd14:110–113[CrossRef]
    [Google Scholar]
  62. Kappes R. M., Kempf B., Bremer E.. ( 1996;). Three transport systems for the osmoprotectant glycine betaine operate in Bacillus subtilis: characterization of OpuD. J Bacteriol178:5071–5079[PubMed]
    [Google Scholar]
  63. Kedar G. C., Brown-Driver V., Reyes D. R., Hilgers M. T., Stidham M. A., Shaw K. J., Finn J., Haselbeck R. J.. ( 2007;). Evaluation of the metS and murB loci for antibiotic discovery using targeted antisense RNA expression analysis in Bacillus anthracis . Antimicrob Agents Chemother51:1708–1718 [CrossRef][PubMed]
    [Google Scholar]
  64. King S. J., Allen A. G., Maskell D. J., Dowson C. G., Whatmore A. M.. ( 2004;). Distribution, genetic diversity, and variable expression of the gene encoding hyaluronate lyase within the Streptococcus suis population. J Bacteriol186:4740–4747 [CrossRef][PubMed]
    [Google Scholar]
  65. Kong F., Gowan S., Martin D., James G., Gilbert G. L.. ( 2002;). Molecular profiles of group B streptococcal surface protein antigen genes: relationship to molecular serotypes. J Clin Microbiol40:620–626 [CrossRef][PubMed]
    [Google Scholar]
  66. Kong F., Gidding H. F., Berner R., Gilbert G. L.. ( 2006;). Streptococcus agalactiae Cβ protein gene (bac) sequence types, based on the repeated region of the cell-wall-spanning domain: relationship to virulence and a proposed standardized nomenclature. J Med Microbiol55:829–837 [CrossRef][PubMed]
    [Google Scholar]
  67. Labbate M., Case R. J., Stokes H. W.. ( 2009;). The integron/gene cassette system: an active player in bacterial adaptation. Methods Mol Biol532:103–125 [CrossRef][PubMed]
    [Google Scholar]
  68. Le Bouguénec C., de Cespédès G., Horaud T.. ( 1990;). Presence of chromosomal elements resembling the composite structure Tn3701 in streptococci. J Bacteriol172:727–734[PubMed]
    [Google Scholar]
  69. Leclercq R.. ( 2002;). Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis34:482–492 [CrossRef][PubMed]
    [Google Scholar]
  70. Lemire P., Houde M., Segura M.. ( 2012;). Encapsulated group B Streptococcus modulates dendritic cell functions via lipid rafts and clathrin-mediated endocytosis. Cell Microbiol14:1707–1719 [CrossRef][PubMed]
    [Google Scholar]
  71. Li W., Liu L., Chen H., Zhou R.. ( 2009;). Identification of Streptococcus suis genes preferentially expressed under iron starvation by selective capture of transcribed sequences. FEMS Microbiol Lett292:123–133 [CrossRef][PubMed]
    [Google Scholar]
  72. Liu G., Zhang W., Lu C.. ( 2012;). Complete genome sequence of Streptococcus agalactiae GD201008-001, isolated in China from tilapia with meningoencephalitis. J Bacteriol194:6653 [CrossRef][PubMed]
    [Google Scholar]
  73. Llosa M., Gomis-Rüth F. X., Coll M., de la Cruz Fd F.. ( 2002;). Bacterial conjugation: a two-step mechanism for DNA transport. Mol Microbiol45:1–8 [CrossRef][PubMed]
    [Google Scholar]
  74. Loo C. Y., Mitrakul K., Voss I. B., Hughes C. V., Ganeshkumar N.. ( 2003;). Involvement of the adc operon and manganese homeostasis in Streptococcus gordonii biofilm formation. J Bacteriol185:2887–2900 [CrossRef][PubMed]
    [Google Scholar]
  75. López de Felipe F., López P., Magni C., de Mendoza D.. ( 1996;). Transcriptional activation of the citrate permease P gene of Lactococcus lactis biovar diacetylactis by an insertion sequence-like element present in plasmid pCIT264. Mol Gen Genet250:428–436 [CrossRef][PubMed]
    [Google Scholar]
  76. Luan S. L., Granlund M., Norgren M.. ( 2003;). An inserted DNA fragment with plasmid features is uniquely associated with the presence of the GBSi1 group II intron in Streptococcus agalactiae . Gene312:305–312 [CrossRef][PubMed]
    [Google Scholar]
  77. Luan S. L., Granlund M., Sellin M., Lagergård T., Spratt B. G., Norgren M.. ( 2005;). Multilocus sequence typing of Swedish invasive group B streptococcus isolates indicates a neonatally associated genetic lineage and capsule switching. J Clin Microbiol43:3727–3733 [CrossRef][PubMed]
    [Google Scholar]
  78. Maddocks S. E., Wright C. J., Nobbs A. H., Brittan J. L., Franklin L., Strömberg N., Kadioglu A., Jepson M. A., Jenkinson H. F.. ( 2011;). Streptococcus pyogenes antigen I/II-family polypeptide AspA shows differential ligand-binding properties and mediates biofilm formation. Mol Microbiol81:1034–1049 [CrossRef][PubMed]
    [Google Scholar]
  79. Mahillon J., Chandler M.. ( 1998;). Insertion sequences. Microbiol Mol Biol Rev62:725–774[PubMed]
    [Google Scholar]
  80. Manning S. D., Neighbors K., Tallman P. A., Gillespie B., Marrs C. F., Borchardt S. M., Baker C. J., Pearlman M. D., Foxman B.. ( 2004;). Prevalence of group B streptococcus colonization and potential for transmission by casual contact in healthy young men and women. Clin Infect Dis39:380–388 [CrossRef][PubMed]
    [Google Scholar]
  81. Maruyama F., Kobata M., Kurokawa K., Nishida K., Sakurai A., Nakano K., Nomura R., Kawabata S., Ooshima T.. & other authors ( 2009;). Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content. BMC Genomics10:358 [CrossRef][PubMed]
    [Google Scholar]
  82. Mashburn-Warren L., Morrison D. A., Federle M. J.. ( 2012;). The cryptic competence pathway in Streptococcus pyogenes is controlled by a peptide pheromone. J Bacteriol194:4589–4600 [CrossRef][PubMed]
    [Google Scholar]
  83. Mathema V. B., Thakuri B. C., Sillanpää M.. ( 2011;). Bacterial mer operon-mediated detoxification of mercurial compounds: a short review. Arch Microbiol193:837–844 [CrossRef][PubMed]
    [Google Scholar]
  84. Metcalf D. S., MacInnes J. I.. ( 2007;). Differential expression of Haemophilus parasuis genes in response to iron restriction and cerebrospinal fluid. Can J Vet Res71:181–188[PubMed]
    [Google Scholar]
  85. Musser J. M., Mattingly S. J., Quentin R., Goudeau A., Selander R. K.. ( 1989;). Identification of a high-virulence clone of type III Streptococcus agalactiae (group B Streptococcus) causing invasive neonatal disease. Proc Natl Acad Sci U S A86:4731–4735 [CrossRef][PubMed]
    [Google Scholar]
  86. Nagano N., Nagano Y., Nakano R., Okamoto R., Inoue M.. ( 2006;). Genetic diversity of the C protein β-antigen gene and its upstream regions within clonally related groups of type Ia and Ib group B streptococci. Microbiology152:771–778 [CrossRef][PubMed]
    [Google Scholar]
  87. Nesmelova I. V., Hackett P. B.. ( 2010;). DDE transposases: structural similarity and diversity. Adv Drug Deliv Rev62:1187–1195 [CrossRef][PubMed]
    [Google Scholar]
  88. Notley-McRobb L., Ferenci T.. ( 1999;). Adaptive mgl-regulatory mutations and genetic diversity evolving in glucose-limited Escherichia coli populations. Environ Microbiol1:33–43 [CrossRef][PubMed]
    [Google Scholar]
  89. Ogura M.. ( 2011;). ZnuABC and ZosA zinc transporters are differently involved in competence development in Bacillus subtilis . J Biochem150:615–625 [CrossRef][PubMed]
    [Google Scholar]
  90. Olasz F., Farkas T., Kiss J., Arini A., Arber W.. ( 1997;). Terminal inverted repeats of insertion sequence IS30 serve as targets for transposition. J Bacteriol179:7551–7558[PubMed]
    [Google Scholar]
  91. Osaki M., Takamatsu D., Shimoji Y., Sekizaki T.. ( 2002;). Characterization of Streptococcus suis genes encoding proteins homologous to sortase of gram-positive bacteria. J Bacteriol184:971–982 [CrossRef][PubMed]
    [Google Scholar]
  92. Padan E., Bibi E., Ito M., Krulwich T. A.. ( 2005;). Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta1717:67–88 [CrossRef][PubMed]
    [Google Scholar]
  93. Park S. E., Jiang S., Wessels M. R.. ( 2012;). CsrRS and environmental pH regulate group B streptococcus adherence to human epithelial cells and extracellular matrix. Infect Immun80:3975–3984 [CrossRef][PubMed]
    [Google Scholar]
  94. Parker L. L., Hall B. G.. ( 1990;). Mechanisms of activation of the cryptic cel operon of Escherichia coli K12. Genetics124:473–482[PubMed]
    [Google Scholar]
  95. Phares C. R., Lynfield R., Farley M. M., Mohle-Boetani J., Harrison L. H., Petit S., Craig A. S., Schaffner W., Zansky S. M.. & other authors ( 2008;). Epidemiology of invasive group B streptococcal disease in the United States, 1999-2005. JAMA299:2056–2065 [CrossRef][PubMed]
    [Google Scholar]
  96. Polissi A., Pontiggia A., Feger G., Altieri M., Mottl H., Ferrari L., Simon D.. ( 1998;). Large-scale identification of virulence genes from Streptococcus pneumoniae . Infect Immun66:5620–5629[PubMed]
    [Google Scholar]
  97. Poyart C., Jardy L., Quesne G., Berche P., Trieu-Cuot P.. ( 2003;). Genetic basis of antibiotic resistance in Streptococcus agalactiae strains isolated in a French hospital. Antimicrob Agents Chemother47:794–797 [CrossRef][PubMed]
    [Google Scholar]
  98. Pritchard D. G., Lin B.. ( 1993;). Group B streptococcal neuraminidase is actually a hyaluronidase. Infect Immun61:3234–3239[PubMed]
    [Google Scholar]
  99. Puymège A., Bertin S., Chuzeville S., Guédon G., Payot S.. ( 2013;). Conjugative transfer and cis-mobilization of a genomic island by an integrative and conjugative element of Streptococcus agalactiae . J Bacteriol195:1142–1151 [CrossRef][PubMed]
    [Google Scholar]
  100. Ragunathan P., Spellerberg B., Ponnuraj K.. ( 2009;). Structure of laminin-binding adhesin (Lmb) from Streptococcus agalactiae . Acta Crystallogr D Biol Crystallogr65:1262–1269 [CrossRef][PubMed]
    [Google Scholar]
  101. Ragunathan P., Sridaran D., Weigel A., Shabayek S., Spellerberg B., Ponnuraj K.. ( 2013;). Metal binding is critical for the folding and function of laminin binding protein, Lmb of Streptococcus agalactiae . PLoS ONE8:e67517 [CrossRef][PubMed]
    [Google Scholar]
  102. Rajeev L., Salyers A. A., Gardner J. F.. ( 2006;). Characterization of the integrase of NBU1, a Bacteroides mobilizable transposon. Mol Microbiol61:978–990 [CrossRef][PubMed]
    [Google Scholar]
  103. Rajeev L., Malanowska K., Gardner J. F.. ( 2009;). Challenging a paradigm: the role of DNA homology in tyrosine recombinase reactions. Microbiol Mol Biol Rev73:300–309 [CrossRef][PubMed]
    [Google Scholar]
  104. Ramaswamy S. V., Ferrieri P., Madoff L. C., Flores A. E., Kumar N., Tettelin H., Paoletti L. C.. ( 2006;). Identification of novel cps locus polymorphisms in nontypable group B Streptococcus . J Med Microbiol55:775–783 [CrossRef][PubMed]
    [Google Scholar]
  105. Rato M. G., Bexiga R., Florindo C., Cavaco L. M., Vilela C. L., Santos-Sanches I.. ( 2013;). Antimicrobial resistance and molecular epidemiology of streptococci from bovine mastitis. Vet Microbiol161:286–294 [CrossRef][PubMed]
    [Google Scholar]
  106. Reimmann C., Haas D.. ( 1987;). Mode of replicon fusion mediated by the duplicated insertion sequence IS21 in Escherichia coli . Genetics115:619–625[PubMed]
    [Google Scholar]
  107. Richards V. P., Lang P., Pavinski Bitar P. D., Lefébure T., Schukken Y. H., Zadoks R. N., Stanhope M. J.. ( 2011;). Comparative genomics and the role of lateral gene transfer in the evolution of bovine adapted Streptococcus agalactiae . Infect Genet Evol11:1263–1275 [CrossRef][PubMed]
    [Google Scholar]
  108. Rojo P., Araya P., Martínez T M. A., Hormazábal J. C., Maldonado A., Fernández J.. ( 2008;). [Molecular characterization of Chilean isolates of Streptococcus agalactiae]. Rev Med Chil136:606–612[PubMed][CrossRef]
    [Google Scholar]
  109. Rolland K., Marois C., Siquier V., Cattier B., Quentin R.. ( 1999;). Genetic features of Streptococcus agalactiae strains causing severe neonatal infections, as revealed by pulsed-field gel electrophoresis and hylB gene analysis. J Clin Microbiol37:1892–1898[PubMed]
    [Google Scholar]
  110. Rubens C. E., Heggen L. M., Kuypers J. M.. ( 1989;). IS861, a group B streptococcal insertion sequence related to IS150 and IS3 of Escherichia coli . J Bacteriol171:5531–5535[PubMed]
    [Google Scholar]
  111. Safi H., Barnes P. F., Lakey D. L., Shams H., Samten B., Vankayalapati R., Howard S. T.. ( 2004;). IS6110 functions as a mobile, monocyte-activated promoter in Mycobacterium tuberculosis . Mol Microbiol52:999–1012 [CrossRef][PubMed]
    [Google Scholar]
  112. Sánchez-Beato A. R., García E., López R., García J. L.. ( 1997;). Identification and characterization of IS1381, a new insertion sequence in Streptococcus pneumoniae . J Bacteriol179:2459–2463[PubMed]
    [Google Scholar]
  113. Santi I., Scarselli M., Mariani M., Pezzicoli A., Masignani V., Taddei A., Grandi G., Telford J. L., Soriani M.. ( 2007;). BibA: a novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood. Mol Microbiol63:754–767 [CrossRef][PubMed]
    [Google Scholar]
  114. Sellin M., Håkansson S., Norgren M.. ( 1995;). Phase-shift of polysaccharide capsule expression in group B streptococci, type III. Microb Pathog18:401–415 [CrossRef][PubMed]
    [Google Scholar]
  115. Sellin M., Olofsson C., Håkansson S., Norgren M.. ( 2000;). Genotyping of the capsule gene cluster (cps) in nontypeable group B streptococci reveals two major cps allelic variants of serotypes III and VII. J Clin Microbiol38:3420–3428[PubMed]
    [Google Scholar]
  116. Sengstag C., Iida S., Hiestand-Nauer R., Arber W.. ( 1986;). Terminal inverted repeats of prokaryotic transposable element IS186 which can generate duplications of variable length at an identical target sequence. Gene49:153–156 [CrossRef][PubMed]
    [Google Scholar]
  117. Shakleina E., Dmitriev A., Tkacikova L., Suvorov A., Mikula I., Totolian A.. ( 2004;). Presence of insertion sequences (IS elements) in group B streptococci of bovine origin. Indian J Med Res119:Suppl.242–246[PubMed]
    [Google Scholar]
  118. Sigge A., Schmid M., Mauerer S., Spellerberg B.. ( 2008;). Heterogeneity of hemolysin expression during neonatal Streptococcus agalactiae sepsis. J Clin Microbiol46:807–809 [CrossRef][PubMed]
    [Google Scholar]
  119. Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M.. ( 2006;). ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res34:D32–D36 [CrossRef][PubMed]
    [Google Scholar]
  120. Siguier P., Gagnevin L., Chandler M.. ( 2009;). The new IS1595 family, its relation to IS1 and the frontier between insertion sequences and transposons. Res Microbiol160:232–241 [CrossRef][PubMed]
    [Google Scholar]
  121. Soto C. Y., Menéndez M. C., Pérez E., Samper S., Gómez A. B., García M. J., Martín C.. ( 2004;). IS6110 mediates increased transcription of the phoP virulence gene in a multidrug-resistant clinical isolate responsible for tuberculosis outbreaks. J Clin Microbiol42:212–219 [CrossRef][PubMed]
    [Google Scholar]
  122. Spellerberg B.. ( 2000a;). Pathogenesis of neonatal Streptococcus agalactiae infections. Microbes Infect2:1733–1742 [CrossRef][PubMed]
    [Google Scholar]
  123. Spellerberg B., Pohl B., Haase G., Martin S., Weber-Heynemann J., Lütticken R.. ( 1999a;). Identification of genetic determinants for the hemolytic activity of Streptococcus agalactiae by ISS1 transposition. J Bacteriol181:3212–3219[PubMed]
    [Google Scholar]
  124. Spellerberg B., Rozdzinski E., Martin S., Weber-Heynemann J., Schnitzler N., Lütticken R., Podbielski A.. ( 1999b;). Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. Infect Immun67:871–878[PubMed]
    [Google Scholar]
  125. Spellerberg B., Martin S., Franken C., Berner R., Lütticken R.. ( 2000b;). Identification of a novel insertion sequence element in Streptococcus agalactiae . Gene241:51–56 [CrossRef][PubMed]
    [Google Scholar]
  126. Stapleton P., Pike R., Mullany P., Lucas V., Roberts G., Rowbury R., Wilson M., Richards H.. ( 2004;). Mercuric resistance genes in gram-positive oral bacteria. FEMS Microbiol Lett236:213–220 [CrossRef][PubMed]
    [Google Scholar]
  127. Sukhnanand S., Dogan B., Ayodele M. O., Zadoks R. N., Craver M. P., Dumas N. B., Schukken Y. H., Boor K. J., Wiedmann M.. ( 2005;). Molecular subtyping and characterization of bovine and human Streptococcus agalactiae isolates. J Clin Microbiol43:1177–1186 [CrossRef][PubMed]
    [Google Scholar]
  128. Takahashi S., Detrick S., Whiting A. A., Blaschke-Bonkowksy A. J., Aoyagi Y., Adderson E. E., Bohnsack J. F.. ( 2002;). Correlation of phylogenetic lineages of group B Streptococci, identified by analysis of restriction-digestion patterns of genomic DNA, with infB alleles and mobile genetic elements. J Infect Dis186:1034–1038 [CrossRef][PubMed]
    [Google Scholar]
  129. Tamura G. S., Herndon M., Przekwas J., Rubens C. E., Ferrieri P., Hillier S. L.. ( 2000;). Analysis of restriction fragment length polymorphisms of the insertion sequence IS1381 in group B streptococci. J Infect Dis181:364–368 [CrossRef][PubMed]
    [Google Scholar]
  130. Tenenbaum T., Spellerberg B., Adam R., Vogel M., Kim K. S., Schroten H.. ( 2007;). Streptococcus agalactiae invasion of human brain microvascular endothelial cells is promoted by the laminin-binding protein Lmb. Microbes Infect9:714–720 [CrossRef][PubMed]
    [Google Scholar]
  131. Tenzen T., Ohtsubo E.. ( 1991;). Preferential transposition of an IS630-associated composite transposon to TA in the 5′-CTAG-3′ sequence. J Bacteriol173:6207–6212[PubMed]
    [Google Scholar]
  132. Tettelin H., Masignani V., Cieslewicz M. J., Eisen J. A., Peterson S., Wessels M. R., Paulsen I. T., Nelson K. E., Margarit I.. & other authors ( 2002;). Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae . Proc Natl Acad Sci U S A99:12391–12396 [CrossRef][PubMed]
    [Google Scholar]
  133. Tettelin H., Masignani V., Cieslewicz M. J., Donati C., Medini D., Ward N. L., Angiuoli S. V., Crabtree J., Jones A. L.. & other authors ( 2005;). Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A102:13950–13955 [CrossRef][PubMed]
    [Google Scholar]
  134. Toro N., Jiménez-Zurdo J. I., García-Rodríguez F. M.. ( 2007;). Bacterial group II introns: not just splicing. FEMS Microbiol Rev31:342–358 [CrossRef][PubMed]
    [Google Scholar]
  135. Treviño J., Perez N., Ramirez-Peña E., Liu Z., Shelburne S. A. III, Musser J. M., Sumby P.. ( 2009;). CovS simultaneously activates and inhibits the CovR-mediated repression of distinct subsets of group A Streptococcus virulence factor-encoding genes. Infect Immun77:3141–3149 [CrossRef][PubMed]
    [Google Scholar]
  136. van der Mee-Marquet N., Fourny L., Arnault L., Domelier A. S., Salloum M., Lartigue M. F., Quentin R.. ( 2008;). Molecular characterization of human-colonizing Streptococcus agalactiae strains isolated from throat, skin, anal margin, and genital body sites. J Clin Microbiol46:2906–2911 [CrossRef][PubMed]
    [Google Scholar]
  137. van der Mee-Marquet N., Domelier A. S., Salloum M., Violette J., Arnault L., Gaillard N., Bind J. L., Lartigue M. F., Quentin R.. Bloodstream Infection Study Group of the Reseau des Hygienistes de la Region Centre ( 2009;). Molecular characterization of temporally and geographically matched Streptococcus agalactiae strains isolated from food products and bloodstream infections. Foodborne Pathog Dis6:1177–1183 [CrossRef][PubMed]
    [Google Scholar]
  138. Vasi J., Lindberg M., Guss B.. ( 2000;). A novel IS-like element frequently inserted in a putative virulence regulator in bovine mastitis isolates of Streptococcus dysgalactiae . Plasmid44:220–230 [CrossRef][PubMed]
    [Google Scholar]
  139. Waditee R., Hibino T., Nakamura T., Incharoensakdi A., Takabe T.. ( 2002;). Overexpression of a Na+/H+ antiporter confers salt tolerance on a freshwater cyanobacterium, making it capable of growth in sea water. Proc Natl Acad Sci U S A99:4109–4114 [CrossRef][PubMed]
    [Google Scholar]
  140. Wallden K., Rivera-Calzada A., Waksman G.. ( 2010;). Type IV secretion systems: versatility and diversity in function. Cell Microbiol12:1203–1212 [CrossRef][PubMed]
    [Google Scholar]
  141. Wang H., Smith M. C., Mullany P.. ( 2006;). The conjugative transposon Tn5397 has a strong preference for integration into its Clostridium difficile target site. J Bacteriol188:4871–4878 [CrossRef][PubMed]
    [Google Scholar]
  142. Wery J., Hidayat B., Kieboom J., de Bont J. A.. ( 2001;). An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress. J Biol Chem276:5700–5706 [CrossRef][PubMed]
    [Google Scholar]
  143. Wiedenbeck J., Cohan F. M.. ( 2011;). Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches. FEMS Microbiol Rev35:957–976 [CrossRef][PubMed]
    [Google Scholar]
  144. Wozniak R. A., Waldor M. K.. ( 2010;). Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol8:552–563 [CrossRef][PubMed]
    [Google Scholar]
  145. Yildirim A. O., Lämmler Ch., Weiß R.. ( 2002a;). Identification and characterization of Streptococcus agalactiae isolated from horses. Vet Microbiol85:31–35 [CrossRef][PubMed]
    [Google Scholar]
  146. Yildirim A. O., Lämmler C., Weiß R., Kopp P.. ( 2002b;). Pheno- and genotypic properties of streptococci of serological group B of canine and feline origin. FEMS Microbiol Lett212:187–192 [CrossRef][PubMed]
    [Google Scholar]
  147. Zerbib D., Gamas P., Chandler M., Prentki P., Bass S., Galas D.. ( 1985;). Specificity of insertion of IS1 . J Mol Biol185:517–524 [CrossRef][PubMed]
    [Google Scholar]
  148. Zuleta L. F., Italiani V. C., Marques M. V.. ( 2003;). Isolation and characterization of NaCl-sensitive mutants of Caulobacter crescentus . Appl Environ Microbiol69:3029–3035 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077628-0
Loading
/content/journal/micro/10.1099/mic.0.077628-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error