1887

Abstract

Psychrophilic micro-organisms are the most dominant flora in cold habitats. Their unique ability to survive and multiply at low temperatures (<5 °C) is based on their ability to modulate the rigidity of the membrane, to transcribe, to translate and to catalyse biochemical reactions at low temperature. A number of genes are known to be upregulated during growth at low temperature and cold-inducible promoters are known to regulate the expression of genes at low temperature. In this review, we attempted to compile promoter sequences of genes that are cold-inducible so as to identify similarities and to compare the distinct features of each type of promoter when microbes are grown in the cold.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077594-0
2014-07-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1291.html?itemId=/content/journal/micro/10.1099/mic.0.077594-0&mimeType=html&fmt=ahah

References

  1. Bae W., Jones P. G., Inouye M.. ( 1997;). CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression. . J Bacteriol 179:, 7081–7088.[PubMed]
    [Google Scholar]
  2. Baross J. A., Morita R. Y.. ( 1978;). Microbial life at low temperatures: ecological aspects. . In Microbial Life in Extreme Environments, pp. 91–71. Edited by Kushner D. J... New York:: Academic Press;.
    [Google Scholar]
  3. Barria C., Malecki M., Arraiano C. M.. ( 2013;). Bacterial adaptation to cold. . Microbiology 159:, 2437–2443. [CrossRef][PubMed]
    [Google Scholar]
  4. Cavicchioli R. T., Torsten T.. ( 2000;). Extremophiles. . In Encyclopedia of Microbiology, vol. 2, , 2nd edn., pp. 317–337. Edited by Lederberg J... San Diego, CA:: Academic Press;.
    [Google Scholar]
  5. Chamot D., Magee W. C., Yu E., Owttrim G. W.. ( 1999;). A cold shock-induced cyanobacterial RNA helicase. . J Bacteriol 181:, 1728–1732.[PubMed]
    [Google Scholar]
  6. Duilio A., Madonna S., Tutino M. L., Pirozzi M., Sannia G., Marino G.. ( 2004;). Promoters from a cold-adapted bacterium: definition of a consensus motif and molecular characterization of UP regulative elements. . Extremophiles 8:, 125–132. [CrossRef][PubMed]
    [Google Scholar]
  7. Estrem S. T., Gaal T., Ross W., Gourse R. L.. ( 1998;). Identification of an UP element consensus sequence for bacterial promoters. . Proc Natl Acad Sci U S A 95:, 9761–9766. [CrossRef][PubMed]
    [Google Scholar]
  8. Fang L., Hou Y., Inouye M.. ( 1998;). Role of the cold-box region in the 5′ untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli. . J Bacteriol 180:, 90–95.[PubMed]
    [Google Scholar]
  9. Goldstein J., Pollitt N. S., Inouye M.. ( 1990;). Major cold shock protein of Escherichia coli. . Proc Natl Acad Sci U S A 87:, 283–287. [CrossRef][PubMed]
    [Google Scholar]
  10. Graumann P. L., Marahiel M. A.. ( 1998;). A superfamily of proteins that contain the cold-shock domain. . Trends Biochem Sci 23:, 286–290. [CrossRef][PubMed]
    [Google Scholar]
  11. Graumann P., Wendrich T. M., Weber M. H., Schröder K., Marahiel M. A.. ( 1997;). A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. . Mol Microbiol 25:, 741–756. [CrossRef][PubMed]
    [Google Scholar]
  12. Gray N. K., Wickens M.. ( 1998;). Control of translation initiation in animals. . Annu Rev Cell Dev Biol 14:, 399–458. [CrossRef][PubMed]
    [Google Scholar]
  13. Janiyani K. L., Ray M. K.. ( 2002;). Cloning, sequencing, and expression of the cold-inducible hutU gene from the Antarctic psychrotrophic bacterium Pseudomonas syringae. . Appl Environ Microbiol 68:, 1–10. [CrossRef][PubMed]
    [Google Scholar]
  14. Jiang W., Fang L., Inouye M.. ( 1996;). The role of the 5′-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation. . J Bacteriol 178:, 4919–4925.[PubMed]
    [Google Scholar]
  15. Jovcic B., Bertani I., Venturi V., Topisirovic L., Kojic M.. ( 2008;). 5′ Untranslated region of the Pseudomonas putida WCS358 stationary phase sigma factor rpoS mRNA is involved in RpoS translational regulation. . J Microbiol 46:, 56–61. [CrossRef][PubMed]
    [Google Scholar]
  16. Kiran M. D., Annapoorni S., Suzuki I., Murata N., Shivaji S.. ( 2005;). Cistrans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. . Extremophiles 9:, 117–125. [CrossRef][PubMed]
    [Google Scholar]
  17. Lee S. J., Xie A., Jiang W., Etchegaray J. P., Jones P. G., Inouye M.. ( 1994;). Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. . Mol Microbiol 11:, 833–839. [CrossRef][PubMed]
    [Google Scholar]
  18. Lim J., Thomas T., Cavicchioli R.. ( 2000;). Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. . J Mol Biol 297:, 553–567. [CrossRef][PubMed]
    [Google Scholar]
  19. Lisser S., Margalit H.. ( 1993;). Compilation of E. coli mRNA promoter sequences. . Nucleic Acids Res 21:, 1507–1516. [CrossRef][PubMed]
    [Google Scholar]
  20. Mazzon R. R., Lang E. A., Silva C. A., Marques M. V.. ( 2012;). Cold shock genes cspA and cspB from Caulobacter crescentus are posttranscriptionally regulated and important for cold adaptation. . J Bacteriol 194:, 6507–6517. [CrossRef][PubMed]
    [Google Scholar]
  21. Mitta M., Fang L., Inouye M.. ( 1997;). Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. . Mol Microbiol 26:, 321–335. [CrossRef][PubMed]
    [Google Scholar]
  22. Nakashima K., Kanamaru K., Mizuno T., Horikoshi K.. ( 1996;). A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. . J Bacteriol 178:, 2994–2997.[PubMed]
    [Google Scholar]
  23. Panoff J. M., Thammavongs B., Guéguen M., Boutibonnes P.. ( 1998;). Cold stress responses in mesophilic bacteria. . Cryobiology 36:, 75–83. [CrossRef][PubMed]
    [Google Scholar]
  24. Pavankumar T. L., Sinha A. K., Ray M. K.. ( 2010;). All three subunits of RecBCD enzyme are essential for DNA repair and low-temperature growth in the Antarctic Pseudomonas syringae Lz4W. . PLoS ONE 5:, e9412. [CrossRef][PubMed]
    [Google Scholar]
  25. Phadtare S., Alsina J., Inouye M.. ( 1999;). Cold-shock response and cold-shock proteins. . Curr Opin Microbiol 2:, 175–180. [CrossRef][PubMed]
    [Google Scholar]
  26. Ross W., Gourse R. L.. ( 2005;). Sequence-independent upstream DNA–αCTD interactions strongly stimulate Escherichia coli RNA polymerase–lacUV5 promoter association. . Proc Natl Acad Sci U S A 102:, 291–296. [CrossRef][PubMed]
    [Google Scholar]
  27. Russell N. J.. ( 1998;). Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. . Adv Biochem Eng Biotechnol 61:, 1–21.[PubMed]
    [Google Scholar]
  28. Sahara T., Suzuki M., Tsuruha J., Takada Y., Fukunaga N.. ( 1999;). cis-Acting elements responsible for low-temperature-inducible expression of the gene coding for the thermolabile isocitrate dehydrogenase isozyme of a psychrophilic bacterium, Vibrio sp. strain ABE-1. . J Bacteriol 181:, 2602–2611.[PubMed]
    [Google Scholar]
  29. Shivaji S., Rao N. S., Saisree L., Sheth V., Reddy G. S., Bhargava P. M.. ( 1989;). Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. . Appl Environ Microbiol 55:, 767–770.[PubMed]
    [Google Scholar]
  30. Singh A. K., Shivaji S.. ( 2010;). A cold-active heat-labile t-RNA modification GTPase from a psychrophilic bacterium Pseudomonas syringae (Lz4W). . Res Microbiol 161:, 46–50. [CrossRef][PubMed]
    [Google Scholar]
  31. Singh A. K., Pindi P. K., Dube S., Sundareswaran V. R., Shivaji S.. ( 2009;). Importance of trmE for growth of the psychrophile Pseudomonas syringae at low temperatures. . Appl Environ Microbiol 75:, 4419–4426. [CrossRef][PubMed]
    [Google Scholar]
  32. Sinha A. K., Pavankumar T. L., Kamisetty S., Mittal P., Ray M. K.. ( 2013;). Replication arrest is a major threat to growth at low temperature in Antarctic Pseudomonas syringae Lz4W. . Mol Microbiol 89:, 792–810. [CrossRef][PubMed]
    [Google Scholar]
  33. Sundareswaran V. R., Singh A. K., Dube S., Shivaji S.. ( 2010;). Aspartate aminotransferase is involved in cold adaptation in psychrophilic Pseudomonas syringae. . Arch Microbiol 192:, 663–672. [CrossRef][PubMed]
    [Google Scholar]
  34. Thieringer H. A., Jones P. G., Inouye M.. ( 1998;). Cold shock and adaptation. . BioEssays 20:, 49–57. [CrossRef][PubMed]
    [Google Scholar]
  35. Toone W. M., Rudd K. E., Friesen J. D.. ( 1991;). deaD, a new Escherichia coli gene encoding a presumed ATP-dependent RNA helicase, can suppress a mutation in rpsB, the gene encoding ribosomal protein S2. . J Bacteriol 173:, 3291–3302.[PubMed]
    [Google Scholar]
  36. Uhlmann-Schiffler H., Rössler O. G., Stahl H.. ( 2002;). The mRNA of DEAD box protein p72 is alternatively translated into an 82-kDa RNA helicase. . J Biol Chem 277:, 1066–1075. [CrossRef][PubMed]
    [Google Scholar]
  37. Uma S., Jadhav R. S., Kumar G. S., Shivaji S., Ray M. K.. ( 1999;). A RNA polymerase with transcriptional activity at 0°C from the Antarctic bacterium Pseudomonas syringae. . FEBS Lett 453:, 313–317. [CrossRef][PubMed]
    [Google Scholar]
  38. Wang N., Yamanaka K., Inouye M.. ( 1999;). CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. . J Bacteriol 181:, 1603–1609.[PubMed]
    [Google Scholar]
  39. Wong K. K., Bouwer H. G., Freitag N. E.. ( 2004;). Evidence implicating the 5′ untranslated region of Listeria monocytogenes actA in the regulation of bacterial actin-based motility. . Cell Microbiol 6:, 155–166. [CrossRef][PubMed]
    [Google Scholar]
  40. Yamanaka K.. ( 1999;). Cold shock response in Escherichia coli. . J Mol Microbiol Biotechnol 1:, 193–202.[PubMed]
    [Google Scholar]
  41. Yamanaka K., Fang L., Inouye M.. ( 1998;). The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. . Mol Microbiol 27:, 247–255. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077594-0
Loading
/content/journal/micro/10.1099/mic.0.077594-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error