1887

Abstract

Psychrophilic micro-organisms are the most dominant flora in cold habitats. Their unique ability to survive and multiply at low temperatures (<5 °C) is based on their ability to modulate the rigidity of the membrane, to transcribe, to translate and to catalyse biochemical reactions at low temperature. A number of genes are known to be upregulated during growth at low temperature and cold-inducible promoters are known to regulate the expression of genes at low temperature. In this review, we attempted to compile promoter sequences of genes that are cold-inducible so as to identify similarities and to compare the distinct features of each type of promoter when microbes are grown in the cold.

Funding
This study was supported by the:
  • Council of Scientific and Industrial Research
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077594-0
2014-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1291.html?itemId=/content/journal/micro/10.1099/mic.0.077594-0&mimeType=html&fmt=ahah

References

  1. Bae W., Jones P. G., Inouye M. ( 1997). CspA, the major cold shock protein of Escherichia coli, negatively regulates its own gene expression. J Bacteriol 179:7081–7088[PubMed]
    [Google Scholar]
  2. Baross J. A., Morita R. Y. ( 1978). Microbial life at low temperatures: ecological aspects. Microbial Life in Extreme Environments91–71. Kushner D. J. New York: Academic Press;
    [Google Scholar]
  3. Barria C., Malecki M., Arraiano C. M. ( 2013). Bacterial adaptation to cold. Microbiology 159:2437–2443 [View Article][PubMed]
    [Google Scholar]
  4. Cavicchioli R. T., Torsten T. ( 2000). Extremophiles. Encyclopedia of Microbiology vol. 2, 2nd edn.317–337 Lederberg J. San Diego, CA: Academic Press;
    [Google Scholar]
  5. Chamot D., Magee W. C., Yu E., Owttrim G. W. ( 1999). A cold shock-induced cyanobacterial RNA helicase. J Bacteriol 181:1728–1732[PubMed]
    [Google Scholar]
  6. Duilio A., Madonna S., Tutino M. L., Pirozzi M., Sannia G., Marino G. ( 2004). Promoters from a cold-adapted bacterium: definition of a consensus motif and molecular characterization of UP regulative elements. Extremophiles 8:125–132 [View Article][PubMed]
    [Google Scholar]
  7. Estrem S. T., Gaal T., Ross W., Gourse R. L. ( 1998). Identification of an UP element consensus sequence for bacterial promoters. Proc Natl Acad Sci U S A 95:9761–9766 [View Article][PubMed]
    [Google Scholar]
  8. Fang L., Hou Y., Inouye M. ( 1998). Role of the cold-box region in the 5′ untranslated region of the cspA mRNA in its transient expression at low temperature in Escherichia coli. J Bacteriol 180:90–95[PubMed]
    [Google Scholar]
  9. Goldstein J., Pollitt N. S., Inouye M. ( 1990). Major cold shock protein of Escherichia coli. Proc Natl Acad Sci U S A 87:283–287 [View Article][PubMed]
    [Google Scholar]
  10. Graumann P. L., Marahiel M. A. ( 1998). A superfamily of proteins that contain the cold-shock domain. Trends Biochem Sci 23:286–290 [View Article][PubMed]
    [Google Scholar]
  11. Graumann P., Wendrich T. M., Weber M. H., Schröder K., Marahiel M. A. ( 1997). A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol Microbiol 25:741–756 [View Article][PubMed]
    [Google Scholar]
  12. Gray N. K., Wickens M. ( 1998). Control of translation initiation in animals. Annu Rev Cell Dev Biol 14:399–458 [View Article][PubMed]
    [Google Scholar]
  13. Janiyani K. L., Ray M. K. ( 2002). Cloning, sequencing, and expression of the cold-inducible hutU gene from the Antarctic psychrotrophic bacterium Pseudomonas syringae. Appl Environ Microbiol 68:1–10 [View Article][PubMed]
    [Google Scholar]
  14. Jiang W., Fang L., Inouye M. ( 1996). The role of the 5′-end untranslated region of the mRNA for CspA, the major cold-shock protein of Escherichia coli, in cold-shock adaptation. J Bacteriol 178:4919–4925[PubMed]
    [Google Scholar]
  15. Jovcic B., Bertani I., Venturi V., Topisirovic L., Kojic M. ( 2008). 5′ Untranslated region of the Pseudomonas putida WCS358 stationary phase sigma factor rpoS mRNA is involved in RpoS translational regulation. J Microbiol 46:56–61 [View Article][PubMed]
    [Google Scholar]
  16. Kiran M. D., Annapoorni S., Suzuki I., Murata N., Shivaji S. ( 2005). Cistrans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9:117–125 [View Article][PubMed]
    [Google Scholar]
  17. Lee S. J., Xie A., Jiang W., Etchegaray J. P., Jones P. G., Inouye M. ( 1994). Family of the major cold-shock protein, CspA (CS7.4), of Escherichia coli, whose members show a high sequence similarity with the eukaryotic Y-box binding proteins. Mol Microbiol 11:833–839 [View Article][PubMed]
    [Google Scholar]
  18. Lim J., Thomas T., Cavicchioli R. ( 2000). Low temperature regulated DEAD-box RNA helicase from the Antarctic archaeon, Methanococcoides burtonii. J Mol Biol 297:553–567 [View Article][PubMed]
    [Google Scholar]
  19. Lisser S., Margalit H. ( 1993). Compilation of E. coli mRNA promoter sequences. Nucleic Acids Res 21:1507–1516 [View Article][PubMed]
    [Google Scholar]
  20. Mazzon R. R., Lang E. A., Silva C. A., Marques M. V. ( 2012). Cold shock genes cspA and cspB from Caulobacter crescentus are posttranscriptionally regulated and important for cold adaptation. J Bacteriol 194:6507–6517 [View Article][PubMed]
    [Google Scholar]
  21. Mitta M., Fang L., Inouye M. ( 1997). Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol 26:321–335 [View Article][PubMed]
    [Google Scholar]
  22. Nakashima K., Kanamaru K., Mizuno T., Horikoshi K. ( 1996). A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli. J Bacteriol 178:2994–2997[PubMed]
    [Google Scholar]
  23. Panoff J. M., Thammavongs B., Guéguen M., Boutibonnes P. ( 1998). Cold stress responses in mesophilic bacteria. Cryobiology 36:75–83 [View Article][PubMed]
    [Google Scholar]
  24. Pavankumar T. L., Sinha A. K., Ray M. K. ( 2010). All three subunits of RecBCD enzyme are essential for DNA repair and low-temperature growth in the Antarctic Pseudomonas syringae Lz4W. PLoS ONE 5:e9412 [View Article][PubMed]
    [Google Scholar]
  25. Phadtare S., Alsina J., Inouye M. ( 1999). Cold-shock response and cold-shock proteins. Curr Opin Microbiol 2:175–180 [View Article][PubMed]
    [Google Scholar]
  26. Ross W., Gourse R. L. ( 2005). Sequence-independent upstream DNA–αCTD interactions strongly stimulate Escherichia coli RNA polymerase–lacUV5 promoter association. Proc Natl Acad Sci U S A 102:291–296 [View Article][PubMed]
    [Google Scholar]
  27. Russell N. J. ( 1998). Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21[PubMed]
    [Google Scholar]
  28. Sahara T., Suzuki M., Tsuruha J., Takada Y., Fukunaga N. ( 1999). cis-Acting elements responsible for low-temperature-inducible expression of the gene coding for the thermolabile isocitrate dehydrogenase isozyme of a psychrophilic bacterium, Vibrio sp. strain ABE-1. J Bacteriol 181:2602–2611[PubMed]
    [Google Scholar]
  29. Shivaji S., Rao N. S., Saisree L., Sheth V., Reddy G. S., Bhargava P. M. ( 1989). Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. Appl Environ Microbiol 55:767–770[PubMed]
    [Google Scholar]
  30. Singh A. K., Shivaji S. ( 2010). A cold-active heat-labile t-RNA modification GTPase from a psychrophilic bacterium Pseudomonas syringae (Lz4W). Res Microbiol 161:46–50 [View Article][PubMed]
    [Google Scholar]
  31. Singh A. K., Pindi P. K., Dube S., Sundareswaran V. R., Shivaji S. ( 2009). Importance of trmE for growth of the psychrophile Pseudomonas syringae at low temperatures. Appl Environ Microbiol 75:4419–4426 [View Article][PubMed]
    [Google Scholar]
  32. Sinha A. K., Pavankumar T. L., Kamisetty S., Mittal P., Ray M. K. ( 2013). Replication arrest is a major threat to growth at low temperature in Antarctic Pseudomonas syringae Lz4W. Mol Microbiol 89:792–810 [View Article][PubMed]
    [Google Scholar]
  33. Sundareswaran V. R., Singh A. K., Dube S., Shivaji S. ( 2010). Aspartate aminotransferase is involved in cold adaptation in psychrophilic Pseudomonas syringae. Arch Microbiol 192:663–672 [View Article][PubMed]
    [Google Scholar]
  34. Thieringer H. A., Jones P. G., Inouye M. ( 1998). Cold shock and adaptation. BioEssays 20:49–57 [View Article][PubMed]
    [Google Scholar]
  35. Toone W. M., Rudd K. E., Friesen J. D. ( 1991). deaD, a new Escherichia coli gene encoding a presumed ATP-dependent RNA helicase, can suppress a mutation in rpsB, the gene encoding ribosomal protein S2. J Bacteriol 173:3291–3302[PubMed]
    [Google Scholar]
  36. Uhlmann-Schiffler H., Rössler O. G., Stahl H. ( 2002). The mRNA of DEAD box protein p72 is alternatively translated into an 82-kDa RNA helicase. J Biol Chem 277:1066–1075 [View Article][PubMed]
    [Google Scholar]
  37. Uma S., Jadhav R. S., Kumar G. S., Shivaji S., Ray M. K. ( 1999). A RNA polymerase with transcriptional activity at 0°C from the Antarctic bacterium Pseudomonas syringae. FEBS Lett 453:313–317 [View Article][PubMed]
    [Google Scholar]
  38. Wang N., Yamanaka K., Inouye M. ( 1999). CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J Bacteriol 181:1603–1609[PubMed]
    [Google Scholar]
  39. Wong K. K., Bouwer H. G., Freitag N. E. ( 2004). Evidence implicating the 5′ untranslated region of Listeria monocytogenes actA in the regulation of bacterial actin-based motility. Cell Microbiol 6:155–166 [View Article][PubMed]
    [Google Scholar]
  40. Yamanaka K. ( 1999). Cold shock response in Escherichia coli. J Mol Microbiol Biotechnol 1:193–202[PubMed]
    [Google Scholar]
  41. Yamanaka K., Fang L., Inouye M. ( 1998). The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol Microbiol 27:247–255 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077594-0
Loading
/content/journal/micro/10.1099/mic.0.077594-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error