1887

Abstract

The post-cytokinetic separation of cells in cell-walled organisms involves enzymic processes that degrade a specific layer of the division septum and the region of the mother cell wall that edges the septum. In the fission yeast , the 1,3-α-glucanase Agn1p, originally identified as a mutanase-like glycoside hydrolase family 71 (GH71) enzyme, dissolves the mother cell wall around the septum edge. Our search in the genomes of completely sequenced fungi identified GH71 hydrolases in Basidiomycota, Taphrinomycotina and Pezizomycotina, but not in Saccharomycotina. The most likely Agn1p orthologues in Pezizomycotina species are not mutanases having mutanase-binding domains, but experimentally non-characterized hypothetical proteins that have no carbohydrate-binding domains. The analysis of the GH71 domains corroborated the phylogenetic relationships of the species determined by previous studies, but suggested a closer relationship to the Basidiomycota proteins than to the Ascomycota proteins. In the genus, the Agn1p proteins are structurally conserved: their GH71 domains are flanked by N-terminal secretion signals and C-terminal sequences containing the conserved block YNFNA/TG. The inactivation of the gene in , the only true dimorphic member of the genus, caused a severe cell-separation defect in its yeast phase, but had no effect on the hyphal growth and yeast-to-mycelium transition. It did not affect the mycelium-to-yeast transition either, only delaying the separation of the yeast cells arising from the fragmenting hyphae. The heterologous expression of partially rescued the separation defect of the Δ cells of . The results presented indicate that the fission yeast Agn1p 1,3-α-glucanases of and share conserved functions in the yeast phase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077511-0
2014-06-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1063.html?itemId=/content/journal/micro/10.1099/mic.0.077511-0&mimeType=html&fmt=ahah

References

  1. Adams D. J..( 2004;). Fungal cell wall chitinases and glucanases. Microbiology150:2029–2035 [CrossRef][PubMed]
    [Google Scholar]
  2. Alonso-Nuñez M. L., An H., Martín-Cuadrado A. B., Mehta S., Petit C., Sipiczki M., del Rey F., Gould K. L., de Aldana C. R..( 2005;). Ace2p controls the expression of genes required for cell separation in Schizosaccharomyces pombe. Mol Biol Cell16:2003–2017 [CrossRef][PubMed]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J..( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  4. Bähler J., Wu J. Q., Longtine M. S., Shah N. G., McKenzie A. III, Steever A. B., Wach A., Philippsen P., Pringle J. R..( 1998;). Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast14:943–951 [CrossRef][PubMed]
    [Google Scholar]
  5. Baladrón V., Ufano S., Dueñas E., Martín-Cuadrado A. B., del Rey F., Vázquez de Aldana C. R..( 2002;). Eng1p, an endo-1,3-β-glucanase localized at the daughter side of the septum, is involved in cell separation in Saccharomyces cerevisiae. Eukaryot Cell1:774–786 [CrossRef][PubMed]
    [Google Scholar]
  6. Balazs A., Batta G., Miklos I., Acs-Szabo L., Vazquez de Aldana C. R., Sipiczki M..( 2012;). Conserved regulators of the cell separation process in Schizosaccharomyces. Fungal Genet Biol49:235–249 [CrossRef][PubMed]
    [Google Scholar]
  7. Basi G., Schmid E., Maundrell K..( 1993;). TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene123:131–136 [CrossRef][PubMed]
    [Google Scholar]
  8. Batta G., Szilagyi Z., Laczik M., Sipiczki M..( 2009;). The involvement of the Schizosaccharomyces pombe sep9/spt8+ gene in the regulation of septum cleavage. FEMS Yeast Res9:757–767 [CrossRef][PubMed]
    [Google Scholar]
  9. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E..( 2004;). WebLogo: a sequence logo generator. Genome Res14:1188–1190 [CrossRef][PubMed]
    [Google Scholar]
  10. Darriba D., Taboada G. L., Doallo R., Posada D..( 2011;). ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics27:1164–1165 [CrossRef][PubMed]
    [Google Scholar]
  11. Dekker N., Speijer D., Grün C. H., van den Berg M., de Haan A., Hochstenbach F..( 2004;). Role of the alpha-glucanase Agn1p in fission-yeast cell separation. Mol Biol Cell15:3903–3914 [CrossRef][PubMed]
    [Google Scholar]
  12. Dodgson J., Brown W., Rosa C. A., Armstrong J..( 2010;). Reorganization of the growth pattern of Schizosaccharomyces pombe in invasive filament formation. Eukaryot Cell9:1788–1797 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J..( 2007;). phylip (phylogeny inference package), version 3.67. Department of Genome Sciences, University of Washington; Seattle, USA:
  14. Fuglsang C. C., Berka R. M., Wahleithner J. A., Kauppinen S., Shuster J. R., Rasmussen G., Halkier T., Dalboge H., Henrissat B..( 2000;). Biochemical analysis of recombinant fungal mutanases. A new family of α1,3-glucanases with novel carbohydrate-binding domains. J Biol Chem275:2009–2018 [CrossRef][PubMed]
    [Google Scholar]
  15. Furuya K., Niki H..( 2009;). Isolation of heterothallic haploid and auxotrophic mutants of Schizosaccharomyces japonicus. Yeast26:221–233 [CrossRef][PubMed]
    [Google Scholar]
  16. García I., Jiménez D., Martín V., Durán A., Sánchez Y..( 2005;). The alpha-glucanase Agn1p is required for cell separation in Schizosaccharomyces pombe. Biol Cell97:569–576 [CrossRef][PubMed]
    [Google Scholar]
  17. Gilkes N. R., Henrissat B., Kilburn D. G., Miller R. C. Jr, Warren R. A. J..( 1991;). Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev55:303–315[PubMed]
    [Google Scholar]
  18. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O..( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol59:307–321 [CrossRef][PubMed]
    [Google Scholar]
  19. Hauser P. M., Burdet F. X., Cissé O. H., Keller L., Taffé P., Sanglard D., Pagni M..( 2010;). Comparative genomics suggests that the fungal pathogen pneumocystis is an obligate parasite scavenging amino acids from its host’s lungs. PLoS ONE5:e15152 [CrossRef][PubMed]
    [Google Scholar]
  20. Helston R. M., Box J. A., Tang W., Baumann P..( 2010;). Schizosaccharomyces cryophilus sp. nov., a new species of fission yeast. FEMS Yeast Res10:779–786 [CrossRef][PubMed]
    [Google Scholar]
  21. Hoffman C. S., Winston F..( 1987;). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene57:267–272 [CrossRef][PubMed]
    [Google Scholar]
  22. Horisberger M., Rouvet-Vauthey M..( 1985;). Cell wall architecture of the fission yeast Schizosaccharomyces pombe. Experientia41:748–750 [CrossRef]
    [Google Scholar]
  23. Howell A. S., Lew D. J..( 2012;). Morphogenesis and the cell cycle. Genetics190:51–77 [CrossRef][PubMed]
    [Google Scholar]
  24. Humbel B. M., Konomi M., Takagi T., Kamasawa N., Ishijima S. A., Osumi M..( 2001;). In situ localization of β-glucans in the cell wall of Schizosaccharomyces pombe. Yeast18:433–444 [CrossRef][PubMed]
    [Google Scholar]
  25. Ito H., Fukuda Y., Murata K., Kimura A..( 1983;). Transformation of intact yeast cells treated with alkali cations. J Bacteriol153:163–168[PubMed]
    [Google Scholar]
  26. James T. Y., Kauff F., Schoch C. L., Matheny P. B., Hofstetter V., Cox C. J., Celio G., Gueidan C., Fraker E..& other authors ( 2006;). Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature443:818–822 [CrossRef][PubMed]
    [Google Scholar]
  27. Johnson B. F., Yoo B. Y., Calleja G. B..( 1973;). Cell division in yeasts: movement of organelles associated with cell plate growth of Schizosaccharomyces pombe. J Bacteriol115:358–366[PubMed]
    [Google Scholar]
  28. Jones D. T., Taylor W. R., Thornton J. M..( 1992;). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci8:275–282[PubMed]
    [Google Scholar]
  29. Katoh K., Toh H..( 2008;). Recent developments in the mafft multiple sequence alignment program. Brief Bioinform9:286–298 [CrossRef][PubMed]
    [Google Scholar]
  30. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A..& other authors ( 2007;). Clustal W and Clustal X version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  31. Martín-Cuadrado A. B., Dueñas E., Sipiczki M., Vázquez de Aldana C. R., del Rey F..( 2003;). The endo-beta-1,3-glucanase eng1p is required for dissolution of the primary septum during cell separation in Schizosaccharomyces pombe. J Cell Sci116:1689–1698 [CrossRef][PubMed]
    [Google Scholar]
  32. Maundrell K..( 1993;). Thiamine-repressible expression vectors pREP and pRIP for fission yeast. Gene123:127–130 [CrossRef][PubMed]
    [Google Scholar]
  33. Miklos I., Szilagyi Z., Watt S., Zilahi E., Batta G., Antunovics Z., Enczi K., Bähler J., Sipiczki M..( 2008;). Genomic expression patterns in cell separation mutants of Schizosaccharomyces pombe defective in the genes sep10+ and sep15+ coding for the Mediator subunits Med31 and Med8. Mol Genet Genomics279:225–238 [CrossRef][PubMed]
    [Google Scholar]
  34. Mitchison J. M..( 1970;). Physiological and cytological methods for Schizosaccharomyces pombe. Methods Cell Physiol4:131–165
    [Google Scholar]
  35. Mouriño-Pérez R. R..( 2013;). Septum development in filamentous ascomycetes. Fungal Biol Rev27:1–9 [CrossRef]
    [Google Scholar]
  36. Nishida H., Hamamoto M., Sugiyama J..( 2011;). Draft genome sequencing of the enigmatic yeast Saitoella complicata. J Gen Appl Microbiol57:243–246 [CrossRef][PubMed]
    [Google Scholar]
  37. Page R. D. M..( 1996;). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci12:357–358[PubMed]
    [Google Scholar]
  38. Petersen T. N., Brunak S., von Heijne G., Nielsen H..( 2011;). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods8:785–786 [CrossRef][PubMed]
    [Google Scholar]
  39. Rhind N., Chen Z., Yassour M., Thompson D. A., Haas B. J., Habib N., Wapinski I., Roy S., Lin M. F..& other authors ( 2011;). Comparative functional genomics of the fission yeasts. Science332:930–936 [CrossRef][PubMed]
    [Google Scholar]
  40. Ronquist F., Teslenko M., van der Mark P., Ayres D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A., Huelsenbeck J. P..( 2012;). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol61:539–542 [CrossRef][PubMed]
    [Google Scholar]
  41. Rosling A., Cox F., Cruz-Martinez K., Ihrmark K., Grelet G.-A., Lindahl B. D., Menkis A., James T. Y..( 2011;). Archaeorhizomycetes: unearthing an ancient class of ubiquitous soil fungi. Science333:876–879 [CrossRef][PubMed]
    [Google Scholar]
  42. Rustici G., Mata J., Kivinen K., Lió P., Penkett C. J., Burns G., Hayles J., Brazma A., Nurse P., Bähler J..( 2004;). Periodic gene expression program of the fission yeast cell cycle. Nat Genet36:809–817 [CrossRef][PubMed]
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T..( 1989;). Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  44. Sipiczki M..( 1995;). Phylogenesis of fission yeasts. Contradictions surrounding the origin of a century old genus. Antonie van Leeuwenhoek68:119–149 [CrossRef][PubMed]
    [Google Scholar]
  45. Sipiczki M..( 2007;). Splitting of the fission yeast septum. FEMS Yeast Res7:761–770 [CrossRef][PubMed]
    [Google Scholar]
  46. Sipiczki M..( 2011;). Dimorphic cycle in Candida citri sp. nov., a novel yeast species isolated from rotting fruit in Borneo. FEMS Yeast Res11:202–208 [CrossRef][PubMed]
    [Google Scholar]
  47. Sipiczki M., Bozsik A..( 2000;). The use of morphomutants to investigate septum formation and cell separation in Schizosaccharomyces pombe. Arch Microbiol174:386–392 [CrossRef][PubMed]
    [Google Scholar]
  48. Sipiczki M., Ferenczy L..( 1978;). Enzymic methods for enrichment of fungal mutants I. Enrichment of Schizosaccharomyces pombe mutants. Mutat Res50:163–173 [CrossRef]
    [Google Scholar]
  49. Sipiczki M., Takeo K., Yamaguchi M., Yoshida S., Miklos I..( 1998;). Environmentally controlled dimorphic cycle in a fission yeast. Microbiology144:1319–1330 [CrossRef][PubMed]
    [Google Scholar]
  50. Sugawara T., Sato M., Takagi T., Kamasaki T., Ohno N., Osumi M..( 2003;). In situ localization of cell wall α-1,3-glucan in the fission yeast Schizosaccharomyces pombe. J Electron Microsc (Tokyo)52:237–242 [CrossRef][PubMed]
    [Google Scholar]
  51. Walker L. A., Lenardon M. D., Preechasuth K., Munro C. A., Gow N. A. R..( 2013;). Cell wall stress induces alternative fungal cytokinesis and septation strategies. J Cell Sci126:2668–2677 [CrossRef][PubMed]
    [Google Scholar]
  52. Walther A., Wendland J..( 2003;). Septation and cytokinesis in fungi. Fungal Genet Biol40:187–196 [CrossRef][PubMed]
    [Google Scholar]
  53. Whelan S., Goldman N..( 2001;). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol18:691–699 [CrossRef][PubMed]
    [Google Scholar]
  54. Wloka C., Bi E..( 2012;). Mechanisms of cytokinesis in budding yeast. Cytoskeleton (Hoboken)69:710–726 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077511-0
Loading
/content/journal/micro/10.1099/mic.0.077511-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error