Metabolism of 2-hydroxy-1-naphthoic acid and naphthalene via gentisic acid by distinctly different sets of enzymes in sp. strain BC1 Free

Abstract

sp. strain BC1, a soil bacterium, isolated from a naphthalene balls manufacturing waste disposal site, is capable of utilizing 2-hydroxy-1-naphthoic acid (2H1NA) and naphthalene individually as the sole source of carbon and energy. To deduce the pathway for degradation of 2H1NA, metabolites isolated from resting cell culture were identified by a combination of chromatographic and spectrometric analyses. Characterization of metabolic intermediates, oxygen uptake studies and enzyme activities revealed that strain BC1 degrades 2H1NA via 2-naphthol, 1,2,6-trihydroxy-1,2-dihydronaphthalene and gentisic acid. In addition, naphthalene was found to be degraded via 1,2-dihydroxy-1,2-dihydronaphthalene, salicylic acid and gentisic acid, with the putative involvement of the classical pathway. Unlike most other Gram-negative bacteria, metabolism of salicylic acid in strain BC1 involves a dual pathway, via gentisic acid and catechol, with the latter being metabolized by catechol 1,2-dioxygenase. Involvement of a non-oxidative decarboxylase in the enzymic transformation of 2H1NA to 2-naphthol indicates an alternative catabolic pathway for the bacterial degradation of hydroxynaphthoic acid. Furthermore, the biochemical observations on the metabolism of structurally similar compounds, naphthalene and 2-naphthol, by similar but different sets of enzymes in strain BC1 were validated by real-time PCR analyses.

Funding
This study was supported by the:
  • Bose Institute
  • Council of Scientific and Industrial Research, Government of India
  • Bose Institute
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077495-0
2014-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/892.html?itemId=/content/journal/micro/10.1099/mic.0.077495-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990). Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Balashova N. V., Kosheleva I. A., Golovchenko N. P., Boronin A. M. ( 1999). Phenanthrene metabolism by Pseudomonas and Burkholderia strains. Process Biochem 35:291–296 [View Article]
    [Google Scholar]
  3. Bianchi D., Bernardi A., Bosetti A., Bortolo R., Cidaria D., Crespi E., Gagliardi I. ( 1997). Synthesis of dihydroxynaphthalene isomers by microbial oxidation of 1- and 2-naphthol. Appl Microbiol Biotechnol 48:363–366 [View Article]
    [Google Scholar]
  4. Chow K. T., Pope M. K., Davies J. ( 1999). Characterization of a vanillic acid non-oxidative decarboxylation gene cluster from Streptomyces sp. D7. Microbiology 145:2393–2403[PubMed]
    [Google Scholar]
  5. Deluca M. E., Hudlicky T. ( 1990). Microbial oxidation of naphthalene derivatives: absolute configuration of metabolites. Tetrahedron Lett 31:13–16 [View Article]
    [Google Scholar]
  6. Dorn E., Knackmuss H. J. ( 1978). Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J 174:85–94[PubMed]
    [Google Scholar]
  7. Dutta T. K., Selifonov S. A., Gunsalus I. C. ( 1998). Oxidation of methyl-substituted naphthalenes: pathways in a versatile Sphingomonas paucimobilis strain. Appl Environ Microbiol 64:1884–1889[PubMed]
    [Google Scholar]
  8. Eaton R. W., Chapman P. J. ( 1992). Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol 174:7542–7554[PubMed]
    [Google Scholar]
  9. Feng T. C., Cui C. Z., Dong F., Feng Y. Y., Liu Y. D., Yang X. M. ( 2012). Phenanthrene biodegradation by halophilic Martelella sp. AD-3. J Appl Microbiol 113:779–789 [View Article][PubMed]
    [Google Scholar]
  10. Grund E., Denecke B., Eichenlaub R. ( 1992). Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl Environ Microbiol 58:1874–1877[PubMed]
    [Google Scholar]
  11. Gu W., Li X., Huang J., Duan Y., Meng Z., Zhang K. Q., Yang J. ( 2011). Cloning, sequencing, and overexpression in Escherichia coli of the Enterobacter sp. Px6-4 gene for ferulic acid decarboxylase. Appl Microbiol Biotechnol 89:1797–1805 [View Article][PubMed]
    [Google Scholar]
  12. He Z., Wiegel J. ( 1996). Purification and characterization of an oxygen-sensitive, reversible 3,4-dihydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum . J Bacteriol 178:3539–3543[PubMed]
    [Google Scholar]
  13. Hintner J. P., Lechner C., Riegert U., Kuhm A. E., Storm T., Reemtsma T., Stolz A. ( 2001). Direct ring fission of salicylate by a salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans . J Bacteriol 183:6936–6942 [View Article][PubMed]
    [Google Scholar]
  14. Hudlicky T., Endoma M. A., Butora G. ( 1996). New chiral synthons from the microbial oxidation of bromonaphthalenes. Tetrahedron 7:61–68 [View Article]
    [Google Scholar]
  15. Ishii Y., Narimatsu Y., Iwasaki Y., Arai N., Kino K., Kirimura K. ( 2004). Reversible and nonoxidative γ-resorcylic acid decarboxylase: characterization and gene cloning of a novel enzyme catalyzing carboxylation of resorcinol, 1,3-dihydroxybenzene, from Rhizobium radiobacter . Biochem Biophys Res Commun 324:611–620 [View Article][PubMed]
    [Google Scholar]
  16. Ishiyama D., Vujaklija D., Davies J. ( 2004). Novel pathway of salicylate degradation by Streptomyces sp. strain WA46. Appl Environ Microbiol 70:1297–1306 [View Article][PubMed]
    [Google Scholar]
  17. Iwabuchi T., Harayama S. ( 1997). Biochemical and genetic characterization of 2-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J Bacteriol 179:6488–6494[PubMed]
    [Google Scholar]
  18. Iwasaki Y., Gunji H., Kino K., Hattori T., Ishii Y., Kirimura K. ( 2010). Novel metabolic pathway for salicylate biodegradation via phenol in yeast Trichosporon moniliiforme . Biodegradation 21:557–564 [View Article][PubMed]
    [Google Scholar]
  19. Jeon C. O., Park M., Ro H. S., Park W., Madsen E. L. ( 2006). The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control. Appl Environ Microbiol 72:1086–1095 [View Article][PubMed]
    [Google Scholar]
  20. Johnson J. L. ( 1994). Similarity analysis of rRNAs. Methods for General and Molecular Bacteriology683–700 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Kamath A. V., Rao N. A., Vaidyanathan C. S. ( 1989). Enzyme catalysed non-oxidative decarboxylation of aromatic acids. II. Identification of active site residues of 2,3-dihydroxybenzoic acid decarboxylase from Aspergillus niger . Biochem Biophys Res Commun 165:20–26 [View Article][PubMed]
    [Google Scholar]
  22. Kojima Y., Itada N., Hayaishi O. ( 1961). Metapyrocatachase: a new catechol-cleaving enzyme. J Biol Chem 236:2223–2228[PubMed]
    [Google Scholar]
  23. Lack L. ( 1959). The enzymic oxidation of gentisic acid. Biochim Biophys Acta 34:117–123 [View Article][PubMed]
    [Google Scholar]
  24. Lanfranconi M. P., Christie-Oleza J. A., Martín-Cardona C., Suárez-Suárez L. Y., Lalucat J., Nogales B., Bosch R. ( 2009). Physiological role of NahW, the additional salicylate hydroxylase found in Pseudomonas stutzeri AN10. FEMS Microbiol Lett 300:265–272 [View Article][PubMed]
    [Google Scholar]
  25. Lee H. J., Kim J. M., Lee S. H., Park M., Lee K., Madsen E. L., Jeon C. O. ( 2011). Gentisate 1,2-dioxygenase, in the third naphthalene catabolic gene cluster of Polaromonas naphthalenivorans CJ2, has a role in naphthalene degradation. Microbiology 157:2891–2903 [View Article][PubMed]
    [Google Scholar]
  26. Lessie T. G., Hendrickson W., Manning B. D., Devereux R. ( 1996). Genomic complexity and plasticity of Burkholderia cepacia . FEMS Microbiol Lett 144:117–128 [View Article][PubMed]
    [Google Scholar]
  27. Li T., Walker A. L., Iwaki H., Hasegawa Y., Liu A. ( 2005). Kinetic and spectroscopic characterization of ACMSD from Pseudomonas fluorescens reveals a pentacoordinate mononuclear metallocofactor. J Am Chem Soc 127:12282–12290 [View Article][PubMed]
    [Google Scholar]
  28. Li T., Iwaki H., Fu R., Hasegawa Y., Zhang H., Liu A. ( 2006). α-Amino-β-carboxymuconic-ϵ-semialdehyde decarboxylase (ACMSD) is a new member of the amidohydrolase superfamily. Biochemistry 45:6628–6634 [View Article][PubMed]
    [Google Scholar]
  29. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. ( 1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275[PubMed]
    [Google Scholar]
  30. Lupa B., Lyon D., Shaw L. N., Sieprawska-Lupa M., Wiegel J. ( 2008). Properties of the reversible nonoxidative vanillate/4-hydroxybenzoate decarboxylase from Bacillus subtilis . Can J Microbiol 54:75–81 [View Article][PubMed]
    [Google Scholar]
  31. Mallick S., Dutta T. K. ( 2008). Kinetics of phenanthrene degradation by Staphylococcus sp. strain PN/Y involving 2-hydroxy-1-naphthoic acid in a novel metabolic pathway. Process Biochem 43:1004–1008 [View Article]
    [Google Scholar]
  32. Mallick S., Chatterjee S., Dutta T. K. ( 2007). A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid. Microbiology 153:2104–2115 [View Article][PubMed]
    [Google Scholar]
  33. Mallick S., Chakraborty J., Dutta T. K. ( 2011). Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Crit Rev Microbiol 37:64–90 [View Article][PubMed]
    [Google Scholar]
  34. Matsui T., Yoshida T., Hayashi T., Nagasawa T. ( 2006). Purification, characterization, and gene cloning of 4-hydroxybenzoate decarboxylase of Enterobacter cloacae P240. Arch Microbiol 186:21–29 [View Article][PubMed]
    [Google Scholar]
  35. Murray K., Williams P. A. ( 1974). Role of catechol and the methylcatechols as inducers of aromatic metabolism in Pseudomonas putida . J Bacteriol 117:1153–1157[PubMed]
    [Google Scholar]
  36. O’Sullivan L. A., Mahenthiralingam E. ( 2005). Biotechnological potential within the genus Burkholderia . Lett Appl Microbiol 41:8–11 [View Article][PubMed]
    [Google Scholar]
  37. Pérez-Pantoja D., Donoso R., Agulló L., Córdova M., Seeger M., Pieper D. H., González B. ( 2012). Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales . Environ Microbiol 14:1091–1117 [View Article][PubMed]
    [Google Scholar]
  38. Phale P. S., Mahajan M. C., Vaidyanathan C. S. ( 1995). A pathway for biodegradation of 1-naphthoic acid by Pseudomonas maltophilia CSV89. Arch Microbiol 163:42–47 [View Article][PubMed]
    [Google Scholar]
  39. Pinyakong O., Habe H., Supaka N., Pinpanichkarn P., Juntongjin K., Yoshida T., Furihata K., Nojiri H., Yamane H., Omori T. ( 2000). Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett 191:115–121 [View Article][PubMed]
    [Google Scholar]
  40. Pinyakong O., Habe H., Yoshida T., Nojiri H., Omori T. ( 2003). Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Commun 301:350–357 [View Article][PubMed]
    [Google Scholar]
  41. Raison J. K., Henson G., Rienits K. G. ( 1966). The oxidation of gentisaldehyde by nicotinamide-adenine dinucleotide-specific, aromatic aldehyde dehydrogenase from rabbit liver. Biochim Biophys Acta 118:285–298 [View Article][PubMed]
    [Google Scholar]
  42. Raschke H., Meier M., Burken J. G., Hany R., Müller M. D., Van Der Meer J. R., Kohler H. P. ( 2001). Biotransformation of various substituted aromatic compounds to chiral dihydrodihydroxy derivatives. Appl Environ Microbiol 67:3333–3339 [View Article][PubMed]
    [Google Scholar]
  43. Roy M., Khara P., Dutta T. K. ( 2012). meta-Cleavage of hydroxynaphthoic acids in the degradation of phenanthrene by Sphingobium sp. strain PNB. Microbiology 158:685–695 [View Article][PubMed]
    [Google Scholar]
  44. Schmittgen T. D., Livak K. J. ( 2008). Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108 [View Article][PubMed]
    [Google Scholar]
  45. Simon M. J., Osslund T. D., Saunders R., Ensley B. D., Suggs S., Harcourt A., Wen-chen S., Cruden D. L., Gibson D. T., Zylstra G. J. ( 1993). Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127:31–37 [View Article][PubMed]
    [Google Scholar]
  46. Smibert R. M., Krieg N. R. ( 1994). Phenotypic characterization. Methods for General and Molecular Bacteriology611–654 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Song J., Sung J., Kim Y. M., Zylstra G. J., Kim E. ( 2000). Roles of the meta- and the ortho-cleavage pathways for the efficient utilization of aromatic hydrocarbons by Sphingomonas yanoikuyae B1. J Microbiol 38:245–249
    [Google Scholar]
  48. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  49. Tao Y., Bentley W. E., Wood T. K. ( 2005). Regiospecific oxidation of naphthalene and fluorene by toluene monooxygenases and engineered toluene 4-monooxygenases of Pseudomonas mendocina KR1. Biotechnol Bioeng 90:85–94 [View Article][PubMed]
    [Google Scholar]
  50. Tao X. Q., Lu G. N., Dang Z., Yang C., Yi X. Y. ( 2007). A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochem 42:401–408 [View Article]
    [Google Scholar]
  51. Tittabutr P., Cho I. K., Li Q. X. ( 2011). Phn and Nag-like dioxygenases metabolize polycyclic aromatic hydrocarbons in Burkholderia sp. C3. Biodegradation 22:1119–1133 [View Article][PubMed]
    [Google Scholar]
  52. Walker N., Lippert K. D. ( 1965). Formation of gentisic acid from 2-naphthol by a Pseudomonas . Biochem J 95:5C–6C[PubMed]
    [Google Scholar]
  53. Whited G. M., Downie J. C., Hudlicky T., Fearnley S. P., Dudding T. C., Olivo H. F., Parker D. ( 1994). Oxidation of 2-methoxynaphthalene by toluene, naphthalene and biphenyl dioxygenases: structure and absolute stereochemistry of metabolites. Bioorg Med Chem 2:727–734 [View Article][PubMed]
    [Google Scholar]
  54. Yen K. M., Gunsalus I. C. ( 1982). Plasmid gene organization: naphthalene/salicylate oxidation. Proc Natl Acad Sci U S A 79:874–878 [View Article][PubMed]
    [Google Scholar]
  55. Yoshida M., Fukuhara N., Oikawa T. ( 2004). Thermophilic, reversible γ-resorcylate decarboxylase from Rhizobium sp. strain MTP-10005: purification, molecular characterization, and expression. J Bacteriol 186:6855–6863 [View Article][PubMed]
    [Google Scholar]
  56. Zang S., Lian B. ( 2009). Synergistic degradation of 2-naphthol by Fusarium proliferatum and Bacillus subtilis in wastewater. J Hazard Mater 166:33–38 [View Article][PubMed]
    [Google Scholar]
  57. Zhou N. Y., Fuenmayor S. L., Williams P. A. ( 2001). nag Genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J Bacteriol 183:700–708 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077495-0
Loading
/content/journal/micro/10.1099/mic.0.077495-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed