1887

Abstract

sp. strain BC1, a soil bacterium, isolated from a naphthalene balls manufacturing waste disposal site, is capable of utilizing 2-hydroxy-1-naphthoic acid (2H1NA) and naphthalene individually as the sole source of carbon and energy. To deduce the pathway for degradation of 2H1NA, metabolites isolated from resting cell culture were identified by a combination of chromatographic and spectrometric analyses. Characterization of metabolic intermediates, oxygen uptake studies and enzyme activities revealed that strain BC1 degrades 2H1NA via 2-naphthol, 1,2,6-trihydroxy-1,2-dihydronaphthalene and gentisic acid. In addition, naphthalene was found to be degraded via 1,2-dihydroxy-1,2-dihydronaphthalene, salicylic acid and gentisic acid, with the putative involvement of the classical pathway. Unlike most other Gram-negative bacteria, metabolism of salicylic acid in strain BC1 involves a dual pathway, via gentisic acid and catechol, with the latter being metabolized by catechol 1,2-dioxygenase. Involvement of a non-oxidative decarboxylase in the enzymic transformation of 2H1NA to 2-naphthol indicates an alternative catabolic pathway for the bacterial degradation of hydroxynaphthoic acid. Furthermore, the biochemical observations on the metabolism of structurally similar compounds, naphthalene and 2-naphthol, by similar but different sets of enzymes in strain BC1 were validated by real-time PCR analyses.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077495-0
2014-05-01
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/892.html?itemId=/content/journal/micro/10.1099/mic.0.077495-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol215:403–410[PubMed][CrossRef]
    [Google Scholar]
  2. Balashova N. V., Kosheleva I. A., Golovchenko N. P., Boronin A. M.. ( 1999;). Phenanthrene metabolism by Pseudomonas and Burkholderia strains. Process Biochem35:291–296 [CrossRef]
    [Google Scholar]
  3. Bianchi D., Bernardi A., Bosetti A., Bortolo R., Cidaria D., Crespi E., Gagliardi I.. ( 1997;). Synthesis of dihydroxynaphthalene isomers by microbial oxidation of 1- and 2-naphthol. Appl Microbiol Biotechnol48:363–366 [CrossRef]
    [Google Scholar]
  4. Chow K. T., Pope M. K., Davies J.. ( 1999;). Characterization of a vanillic acid non-oxidative decarboxylation gene cluster from Streptomyces sp. D7. Microbiology145:2393–2403[PubMed]
    [Google Scholar]
  5. Deluca M. E., Hudlicky T.. ( 1990;). Microbial oxidation of naphthalene derivatives: absolute configuration of metabolites. Tetrahedron Lett31:13–16 [CrossRef]
    [Google Scholar]
  6. Dorn E., Knackmuss H. J.. ( 1978;). Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J174:85–94[PubMed]
    [Google Scholar]
  7. Dutta T. K., Selifonov S. A., Gunsalus I. C.. ( 1998;). Oxidation of methyl-substituted naphthalenes: pathways in a versatile Sphingomonas paucimobilis strain. Appl Environ Microbiol64:1884–1889[PubMed]
    [Google Scholar]
  8. Eaton R. W., Chapman P. J.. ( 1992;). Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol174:7542–7554[PubMed]
    [Google Scholar]
  9. Feng T. C., Cui C. Z., Dong F., Feng Y. Y., Liu Y. D., Yang X. M.. ( 2012;). Phenanthrene biodegradation by halophilic Martelella sp. AD-3. J Appl Microbiol113:779–789 [CrossRef][PubMed]
    [Google Scholar]
  10. Grund E., Denecke B., Eichenlaub R.. ( 1992;). Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl Environ Microbiol58:1874–1877[PubMed]
    [Google Scholar]
  11. Gu W., Li X., Huang J., Duan Y., Meng Z., Zhang K. Q., Yang J.. ( 2011;). Cloning, sequencing, and overexpression in Escherichia coli of the Enterobacter sp. Px6-4 gene for ferulic acid decarboxylase. Appl Microbiol Biotechnol89:1797–1805 [CrossRef][PubMed]
    [Google Scholar]
  12. He Z., Wiegel J.. ( 1996;). Purification and characterization of an oxygen-sensitive, reversible 3,4-dihydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum . J Bacteriol178:3539–3543[PubMed]
    [Google Scholar]
  13. Hintner J. P., Lechner C., Riegert U., Kuhm A. E., Storm T., Reemtsma T., Stolz A.. ( 2001;). Direct ring fission of salicylate by a salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans . J Bacteriol183:6936–6942 [CrossRef][PubMed]
    [Google Scholar]
  14. Hudlicky T., Endoma M. A., Butora G.. ( 1996;). New chiral synthons from the microbial oxidation of bromonaphthalenes. Tetrahedron7:61–68 [CrossRef]
    [Google Scholar]
  15. Ishii Y., Narimatsu Y., Iwasaki Y., Arai N., Kino K., Kirimura K.. ( 2004;). Reversible and nonoxidative γ-resorcylic acid decarboxylase: characterization and gene cloning of a novel enzyme catalyzing carboxylation of resorcinol, 1,3-dihydroxybenzene, from Rhizobium radiobacter . Biochem Biophys Res Commun324:611–620 [CrossRef][PubMed]
    [Google Scholar]
  16. Ishiyama D., Vujaklija D., Davies J.. ( 2004;). Novel pathway of salicylate degradation by Streptomyces sp. strain WA46. Appl Environ Microbiol70:1297–1306 [CrossRef][PubMed]
    [Google Scholar]
  17. Iwabuchi T., Harayama S.. ( 1997;). Biochemical and genetic characterization of 2-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J Bacteriol179:6488–6494[PubMed]
    [Google Scholar]
  18. Iwasaki Y., Gunji H., Kino K., Hattori T., Ishii Y., Kirimura K.. ( 2010;). Novel metabolic pathway for salicylate biodegradation via phenol in yeast Trichosporon moniliiforme . Biodegradation21:557–564 [CrossRef][PubMed]
    [Google Scholar]
  19. Jeon C. O., Park M., Ro H. S., Park W., Madsen E. L.. ( 2006;). The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control. Appl Environ Microbiol72:1086–1095 [CrossRef][PubMed]
    [Google Scholar]
  20. Johnson J. L.. ( 1994;). Similarity analysis of rRNAs. Methods for General and Molecular Bacteriology683–700 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Kamath A. V., Rao N. A., Vaidyanathan C. S.. ( 1989;). Enzyme catalysed non-oxidative decarboxylation of aromatic acids. II. Identification of active site residues of 2,3-dihydroxybenzoic acid decarboxylase from Aspergillus niger . Biochem Biophys Res Commun165:20–26 [CrossRef][PubMed]
    [Google Scholar]
  22. Kojima Y., Itada N., Hayaishi O.. ( 1961;). Metapyrocatachase: a new catechol-cleaving enzyme. J Biol Chem236:2223–2228[PubMed]
    [Google Scholar]
  23. Lack L.. ( 1959;). The enzymic oxidation of gentisic acid. Biochim Biophys Acta34:117–123 [CrossRef][PubMed]
    [Google Scholar]
  24. Lanfranconi M. P., Christie-Oleza J. A., Martín-Cardona C., Suárez-Suárez L. Y., Lalucat J., Nogales B., Bosch R.. ( 2009;). Physiological role of NahW, the additional salicylate hydroxylase found in Pseudomonas stutzeri AN10. FEMS Microbiol Lett300:265–272 [CrossRef][PubMed]
    [Google Scholar]
  25. Lee H. J., Kim J. M., Lee S. H., Park M., Lee K., Madsen E. L., Jeon C. O.. ( 2011;). Gentisate 1,2-dioxygenase, in the third naphthalene catabolic gene cluster of Polaromonas naphthalenivorans CJ2, has a role in naphthalene degradation. Microbiology157:2891–2903 [CrossRef][PubMed]
    [Google Scholar]
  26. Lessie T. G., Hendrickson W., Manning B. D., Devereux R.. ( 1996;). Genomic complexity and plasticity of Burkholderia cepacia . FEMS Microbiol Lett144:117–128 [CrossRef][PubMed]
    [Google Scholar]
  27. Li T., Walker A. L., Iwaki H., Hasegawa Y., Liu A.. ( 2005;). Kinetic and spectroscopic characterization of ACMSD from Pseudomonas fluorescens reveals a pentacoordinate mononuclear metallocofactor. J Am Chem Soc127:12282–12290 [CrossRef][PubMed]
    [Google Scholar]
  28. Li T., Iwaki H., Fu R., Hasegawa Y., Zhang H., Liu A.. ( 2006;). α-Amino-β-carboxymuconic-ϵ-semialdehyde decarboxylase (ACMSD) is a new member of the amidohydrolase superfamily. Biochemistry45:6628–6634 [CrossRef][PubMed]
    [Google Scholar]
  29. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J.. ( 1951;). Protein measurement with the Folin phenol reagent. J Biol Chem193:265–275[PubMed]
    [Google Scholar]
  30. Lupa B., Lyon D., Shaw L. N., Sieprawska-Lupa M., Wiegel J.. ( 2008;). Properties of the reversible nonoxidative vanillate/4-hydroxybenzoate decarboxylase from Bacillus subtilis . Can J Microbiol54:75–81 [CrossRef][PubMed]
    [Google Scholar]
  31. Mallick S., Dutta T. K.. ( 2008;). Kinetics of phenanthrene degradation by Staphylococcus sp. strain PN/Y involving 2-hydroxy-1-naphthoic acid in a novel metabolic pathway. Process Biochem43:1004–1008 [CrossRef]
    [Google Scholar]
  32. Mallick S., Chatterjee S., Dutta T. K.. ( 2007;). A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2′-hydroxyphenyl)-pent-4-enoic acid. Microbiology153:2104–2115 [CrossRef][PubMed]
    [Google Scholar]
  33. Mallick S., Chakraborty J., Dutta T. K.. ( 2011;). Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: a review. Crit Rev Microbiol37:64–90 [CrossRef][PubMed]
    [Google Scholar]
  34. Matsui T., Yoshida T., Hayashi T., Nagasawa T.. ( 2006;). Purification, characterization, and gene cloning of 4-hydroxybenzoate decarboxylase of Enterobacter cloacae P240. Arch Microbiol186:21–29 [CrossRef][PubMed]
    [Google Scholar]
  35. Murray K., Williams P. A.. ( 1974;). Role of catechol and the methylcatechols as inducers of aromatic metabolism in Pseudomonas putida . J Bacteriol117:1153–1157[PubMed]
    [Google Scholar]
  36. O’Sullivan L. A., Mahenthiralingam E.. ( 2005;). Biotechnological potential within the genus Burkholderia . Lett Appl Microbiol41:8–11 [CrossRef][PubMed]
    [Google Scholar]
  37. Pérez-Pantoja D., Donoso R., Agulló L., Córdova M., Seeger M., Pieper D. H., González B.. ( 2012;). Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales . Environ Microbiol14:1091–1117 [CrossRef][PubMed]
    [Google Scholar]
  38. Phale P. S., Mahajan M. C., Vaidyanathan C. S.. ( 1995;). A pathway for biodegradation of 1-naphthoic acid by Pseudomonas maltophilia CSV89. Arch Microbiol163:42–47 [CrossRef][PubMed]
    [Google Scholar]
  39. Pinyakong O., Habe H., Supaka N., Pinpanichkarn P., Juntongjin K., Yoshida T., Furihata K., Nojiri H., Yamane H., Omori T.. ( 2000;). Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett191:115–121 [CrossRef][PubMed]
    [Google Scholar]
  40. Pinyakong O., Habe H., Yoshida T., Nojiri H., Omori T.. ( 2003;). Identification of three novel salicylate 1-hydroxylases involved in the phenanthrene degradation of Sphingobium sp. strain P2. Biochem Biophys Res Commun301:350–357 [CrossRef][PubMed]
    [Google Scholar]
  41. Raison J. K., Henson G., Rienits K. G.. ( 1966;). The oxidation of gentisaldehyde by nicotinamide-adenine dinucleotide-specific, aromatic aldehyde dehydrogenase from rabbit liver. Biochim Biophys Acta118:285–298 [CrossRef][PubMed]
    [Google Scholar]
  42. Raschke H., Meier M., Burken J. G., Hany R., Müller M. D., Van Der Meer J. R., Kohler H. P.. ( 2001;). Biotransformation of various substituted aromatic compounds to chiral dihydrodihydroxy derivatives. Appl Environ Microbiol67:3333–3339 [CrossRef][PubMed]
    [Google Scholar]
  43. Roy M., Khara P., Dutta T. K.. ( 2012;). meta-Cleavage of hydroxynaphthoic acids in the degradation of phenanthrene by Sphingobium sp. strain PNB. Microbiology158:685–695 [CrossRef][PubMed]
    [Google Scholar]
  44. Schmittgen T. D., Livak K. J.. ( 2008;). Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc3:1101–1108 [CrossRef][PubMed]
    [Google Scholar]
  45. Simon M. J., Osslund T. D., Saunders R., Ensley B. D., Suggs S., Harcourt A., Wen-chen S., Cruden D. L., Gibson D. T., Zylstra G. J.. ( 1993;). Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene127:31–37 [CrossRef][PubMed]
    [Google Scholar]
  46. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. Methods for General and Molecular Bacteriology611–654 Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Song J., Sung J., Kim Y. M., Zylstra G. J., Kim E.. ( 2000;). Roles of the meta- and the ortho-cleavage pathways for the efficient utilization of aromatic hydrocarbons by Sphingomonas yanoikuyae B1. J Microbiol38:245–249
    [Google Scholar]
  48. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  49. Tao Y., Bentley W. E., Wood T. K.. ( 2005;). Regiospecific oxidation of naphthalene and fluorene by toluene monooxygenases and engineered toluene 4-monooxygenases of Pseudomonas mendocina KR1. Biotechnol Bioeng90:85–94 [CrossRef][PubMed]
    [Google Scholar]
  50. Tao X. Q., Lu G. N., Dang Z., Yang C., Yi X. Y.. ( 2007;). A phenanthrene-degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochem42:401–408 [CrossRef]
    [Google Scholar]
  51. Tittabutr P., Cho I. K., Li Q. X.. ( 2011;). Phn and Nag-like dioxygenases metabolize polycyclic aromatic hydrocarbons in Burkholderia sp. C3. Biodegradation22:1119–1133 [CrossRef][PubMed]
    [Google Scholar]
  52. Walker N., Lippert K. D.. ( 1965;). Formation of gentisic acid from 2-naphthol by a Pseudomonas . Biochem J95:5C–6C[PubMed]
    [Google Scholar]
  53. Whited G. M., Downie J. C., Hudlicky T., Fearnley S. P., Dudding T. C., Olivo H. F., Parker D.. ( 1994;). Oxidation of 2-methoxynaphthalene by toluene, naphthalene and biphenyl dioxygenases: structure and absolute stereochemistry of metabolites. Bioorg Med Chem2:727–734 [CrossRef][PubMed]
    [Google Scholar]
  54. Yen K. M., Gunsalus I. C.. ( 1982;). Plasmid gene organization: naphthalene/salicylate oxidation. Proc Natl Acad Sci U S A79:874–878 [CrossRef][PubMed]
    [Google Scholar]
  55. Yoshida M., Fukuhara N., Oikawa T.. ( 2004;). Thermophilic, reversible γ-resorcylate decarboxylase from Rhizobium sp. strain MTP-10005: purification, molecular characterization, and expression. J Bacteriol186:6855–6863 [CrossRef][PubMed]
    [Google Scholar]
  56. Zang S., Lian B.. ( 2009;). Synergistic degradation of 2-naphthol by Fusarium proliferatum and Bacillus subtilis in wastewater. J Hazard Mater166:33–38 [CrossRef][PubMed]
    [Google Scholar]
  57. Zhou N. Y., Fuenmayor S. L., Williams P. A.. ( 2001;). nag Genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J Bacteriol183:700–708 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077495-0
Loading
/content/journal/micro/10.1099/mic.0.077495-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error