Cyclo(valine–valine) inhibits virulence gene expression Free

Abstract

has been shown to produce a cyclic dipeptide, cyclo(phenylalanine–proline) (cFP), that functions to repress virulence factor production. The objective of this study was to determine if heterologous cyclic dipeptides could repress virulence factor production. To that end, three synthetic cyclic dipeptides that differed in their side chains from cFP were assayed for virulence inhibitory activity in . The results revealed that cyclo(valine–valine) (cVV) inhibited virulence factor production by a ToxR-dependent process that resulted in the repression of the virulence regulator . cVV-dependent repression of was found to be independent of known regulatory genes. The results demonstrated that was able to respond to exogenous cyclic dipeptides and implicated the hydrophobic amino acid side chains on both arms of the cyclo dipeptide scaffold as structural requirements for inhibitory activity. The results further suggest that cyclic dipeptides have potential as therapeutics for cholera treatment.

Funding
This study was supported by the:
  • National Institute of Allergy and Infectious Diseases
  • National Institutes of Health (Award R01AI091845 and R21AI092007)
  • University of Pittsburgh, Department of Chemistry
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077297-0
2014-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1054.html?itemId=/content/journal/micro/10.1099/mic.0.077297-0&mimeType=html&fmt=ahah

References

  1. Bennish M. L. ( 1994). Cholera: pathophysiology, clinical features, and treatment. Vibrio cholerae and Cholera: Molecular to Global Perspectives229–255 Wachsmuth P. B. I. K., Olsvik O. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Bina X. R., Bina J. E. ( 2010). The cyclic dipeptide cyclo(Phe-Pro) inhibits cholera toxin and toxin-coregulated pilus production in O1 El Tor Vibrio cholerae. J Bacteriol 192:3829–3832 [View Article][PubMed]
    [Google Scholar]
  3. Bina J. E., Provenzano D., Wang C., Bina X. R., Mekalanos J. J. ( 2006). Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 186:171–181 [View Article][PubMed]
    [Google Scholar]
  4. Bina X. R., Provenzano D., Nguyen N., Bina J. E. ( 2008). Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine. Infect Immun 76:3595–3605 [View Article][PubMed]
    [Google Scholar]
  5. Bina X. R., Taylor D. L., Vikram A., Ante V. M., Bina J. E. ( 2013). Vibrio cholerae ToxR downregulates virulence factor production in response to cyclo(Phe-Pro). MBio 4:e00366-13 [View Article][PubMed]
    [Google Scholar]
  6. Borthwick A. D. ( 2012). 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 112:3641–3716 [View Article][PubMed]
    [Google Scholar]
  7. Childers B. M., Klose K. E. ( 2007). Regulation of virulence in Vibrio cholerae: the ToxR regulon. Future Microbiol 2:335–344 [View Article][PubMed]
    [Google Scholar]
  8. Guzman L. M., Belin D., Carson M. J., Beckwith J. ( 1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130[PubMed]
    [Google Scholar]
  9. Häse C. C., Mekalanos J. J. ( 1998). TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 95:730–734 [View Article][PubMed]
    [Google Scholar]
  10. Heidelberg J. F., Eisen J. A., Nelson W. C., Clayton R. A., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D. & other authors ( 2000). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483 [View Article][PubMed]
    [Google Scholar]
  11. Herrington D. A., Hall R. H., Losonsky G., Mekalanos J. J., Taylor R. K., Levine M. M. ( 1988). Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168:1487–1492 [View Article][PubMed]
    [Google Scholar]
  12. Higgins D. E., DiRita V. J. ( 1994). Transcriptional control of toxT, a regulatory gene in the ToxR regulon of Vibrio cholerae. Mol Microbiol 14:17–29 [View Article][PubMed]
    [Google Scholar]
  13. Holmgren J. ( 1981). Actions of cholera toxin and the prevention and treatment of cholera. Nature 292:413–417 [View Article][PubMed]
    [Google Scholar]
  14. Iwanaga M., Yamamoto K., Higa N., Ichinose Y., Nakasone N., Tanabe M. ( 1986). Culture conditions for stimulating cholera toxin production by Vibrio cholerae O1 El Tor. Microbiol Immunol 30:1075–1083 [View Article][PubMed]
    [Google Scholar]
  15. Kaper J. B., Morris J. G. Jr, Levine M. M. ( 1995). Cholera. Clin Microbiol Rev 8:48–86[PubMed]
    [Google Scholar]
  16. Kitaoka M., Miyata S. T., Unterweger D., Pukatzki S. ( 2011). Antibiotic resistance mechanisms of Vibrio cholerae. J Med Microbiol 60:397–407 [View Article][PubMed]
    [Google Scholar]
  17. Klose K. E., Mekalanos J. J. ( 1998). Differential regulation of multiple flagellins in Vibrio cholerae. J Bacteriol 180:303–316[PubMed]
    [Google Scholar]
  18. Kovacikova G., Skorupski K. ( 1999). A Vibrio cholerae LysR homolog, AphB, cooperates with AphA at the tcpPH promoter to activate expression of the ToxR virulence cascade. J Bacteriol 181:4250–4256[PubMed]
    [Google Scholar]
  19. Kovacikova G., Skorupski K. ( 2002). Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol Microbiol 46:1135–1147 [View Article][PubMed]
    [Google Scholar]
  20. Lee S. H., Hava D. L., Waldor M. K., Camilli A. ( 1999). Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99:625–634 [View Article][PubMed]
    [Google Scholar]
  21. Lin W., Kovacikova G., Skorupski K. ( 2007). The quorum sensing regulator HapR downregulates the expression of the virulence gene transcription factor AphA in Vibrio cholerae by antagonizing Lrp- and VpsR-mediated activation. Mol Microbiol 64:953–967 [View Article][PubMed]
    [Google Scholar]
  22. Livak K. J., Schmittgen T. D. ( 2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCtmethod. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  23. Metcalf W. W., Jiang W., Daniels L. L., Kim S.-K., Haldimann A., Wanner B. L. ( 1996). Conditionally replicative and conjugative plasmids carrying lacZ α for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35:1–13 [View Article][PubMed]
    [Google Scholar]
  24. Miller V. L., Mekalanos J. J. ( 1988). A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170:2575–2583[PubMed]
    [Google Scholar]
  25. Nelson E. J., Harris J. B., Morris J. G. Jr, Calderwood S. B., Camilli A. ( 2009). Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat Rev Microbiol 7:693–702 [View Article][PubMed]
    [Google Scholar]
  26. Ng W. L., Bassler B. L. ( 2009). Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222 [View Article][PubMed]
    [Google Scholar]
  27. Park D.-K., Lee K.-E., Baek C.-H., Kim I. H., Kwon J. H., Lee W. K., Lee K. H., Kim B. S., Choi S. H., Kim K. S. ( 2006). Cyclo(Phe-Pro) modulates the expression of ompU in Vibrio spp.. J Bacteriol 188:2214–2221 [View Article][PubMed]
    [Google Scholar]
  28. Prasad C. ( 1995). Bioactive cyclic dipeptides. Peptides 16:151–164 [View Article][PubMed]
    [Google Scholar]
  29. Rutherford S. T., van Kessel J. C., Shao Y., Bassler B. L. ( 2011). AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev 25:397–408 [View Article][PubMed]
    [Google Scholar]
  30. Shao Y., Bassler B. L. ( 2012). Quorum-sensing non-coding small RNAs use unique pairing regions to differentially control mRNA targets. Mol Microbiol 83:599–611 [View Article][PubMed]
    [Google Scholar]
  31. Skorupski K., Taylor R. K. ( 1999). A new level in the Vibrio cholerae ToxR virulence cascade: AphA is required for transcriptional activation of the tcpPH operon. Mol Microbiol 31:763–771 [View Article][PubMed]
    [Google Scholar]
  32. Taylor R. K., Miller V. L., Furlong D. B., Mekalanos J. J. ( 1987). Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A 84:2833–2837 [View Article][PubMed]
    [Google Scholar]
  33. Taylor D. L., Bina X. R., Bina J. E. ( 2012). Vibrio cholerae VexH encodes a multiple drug efflux pump that contributes to the production of cholera toxin and the toxin co-regulated pilus. PLoS ONE 7:e38208 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077297-0
Loading
/content/journal/micro/10.1099/mic.0.077297-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed