as an alternative model of infection Free

Abstract

is a Gram-negative intracellular bacterium and is the causative agent of the zoonotic disease Q fever. Several rodent and non-human primate models of virulent phase I [Nine Mile (NM)I] have been developed, and have been used to determine the efficacy of antibiotics and vaccine candidates. However, there are several advantages to using insect models to study host–microbe interactions, such as reduced animal use, lowered cost and ease of manipulation in high containment. In addition, many laboratories use the avirulent phase II clone (NMII) to study cellular interactions and identify novel virulence determinants using genetic manipulation. We report that larvae of the greater wax moth, , were susceptible to infection with both NMI and NMII. Following subcutaneous infection, we report that intracellular bacteria were present within haemocytes and that larval death occurred in a dose-dependent manner. Additionally, we have used the model to characterize the role of the type 4 secretion system in NMII and to determine antibiotic efficacy in a non-mammalian model of disease.

Funding
This study was supported by the:
  • Ministry of Defence
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077230-0
2014-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1175.html?itemId=/content/journal/micro/10.1099/mic.0.077230-0&mimeType=html&fmt=ahah

References

  1. Anderson A., Bijlmer H., Fournier P.‐E., Graves S., Hartzell J., Kersh G. J., Limonard G., Marrie T. J., Massung R. F. & other authors ( 2013). Diagnosis and Management of Q Fever ‐ United States, 2013: Recommendations from CDC and the Q Fever Working Group. Atlanta, GA: Centers for Disease Control and Prevention. http://www.cdc.gov/mmwr/preview/mmwrhtml/rr6203a1.htm [View Article][PubMed]
    [Google Scholar]
  2. Andoh M., Naganawa T., Hotta A., Yamaguchi T., Fukushi H., Masegi T., Hirai K. ( 2003). SCID mouse model for lethal Q fever. Infect Immun 71:4717–4723 [View Article][PubMed]
    [Google Scholar]
  3. Andoh M., Zhang G., Russell-Lodrigue K. E., Shive H. R., Weeks B. R., Samuel J. E. ( 2007). T cells are essential for bacterial clearance, and gamma interferon, tumor necrosis factor alpha, and B cells are crucial for disease development in Coxiella burnetii infection in mice. Infect Immun 75:3245–3255 [View Article][PubMed]
    [Google Scholar]
  4. Aperis G., Fuchs B. B., Anderson C. A., Warner J. E., Calderwood S. B., Mylonakis E. ( 2007). Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes Infect 9:729–734 [View Article][PubMed]
    [Google Scholar]
  5. Bailey M. S., Trinick T. R., Dunbar J. A., Hatch R., Osborne J. C., Brooks T. J., Green A. D. ( 2011). Undifferentiated febrile illnesses amongst British troops in Helmand, Afghanistan. J R Army Med Corps 157:150–155 [View Article][PubMed]
    [Google Scholar]
  6. Beare P. A., Howe D., Cockrell D. C., Omsland A., Hansen B., Heinzen R. A. ( 2009). Characterization of a Coxiella burnetii ftsZ mutant generated by Himar1 transposon mutagenesis. J Bacteriol 191:1369–1381 [View Article][PubMed]
    [Google Scholar]
  7. Beare P. A., Sandoz K. M., Omsland A., Rockey D. D., Heinzen R. A. ( 2011a). Advances in genetic manipulation of obligate intracellular bacterial pathogens. Front Microbiol 2:97 [View Article][PubMed]
    [Google Scholar]
  8. Beare P. A., Gilk S. D., Larson C. L., Hill J., Stead C. M., Omsland A., Cockrell D. C., Howe D., Voth D. E., Heinzen R. A. ( 2011b). Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages. MBio 2:e00175-11 [View Article][PubMed]
    [Google Scholar]
  9. Beare P. A., Larson C. L., Gilk S. D., Heinzen R. A. ( 2012). Two systems for targeted gene deletion in Coxiella burnetii. Appl Environ Microbiol 78:4580–4589 [View Article][PubMed]
    [Google Scholar]
  10. Bergin D., Reeves E. P., Renwick J., Wientjes F. B., Kavanagh K. ( 2005). Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 73:4161–4170 [View Article][PubMed]
    [Google Scholar]
  11. Champion O. L., Karlyshev A. V., Senior N. J., Woodward M., La Ragione R., Howard S. L., Wren B. W., Titball R. W. ( 2010). Insect infection model for Campylobacter jejuni reveals that O-methyl phosphoramidate has insecticidal activity. J Infect Dis 201:776–782[PubMed]
    [Google Scholar]
  12. Derrick E. H. ( 1983). “Q” fever, a new fever entity: clinical features, diagnosis and laboratory investigation. Rev Infect Dis 5:790–800 [View Article][PubMed]
    [Google Scholar]
  13. Desbois A. P., Coote P. J. ( 2011). Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents. J Antimicrob Chemother 66:1785–1790 [View Article][PubMed]
    [Google Scholar]
  14. Dijkstra F., van der Hoek W., Wijers N., Schimmer B., Rietveld A., Wijkmans C. J., Vellema P., Schneeberger P. M. ( 2012). The 2007–2010 Q fever epidemic in The Netherlands: characteristics of notified acute Q fever patients and the association with dairy goat farming. FEMS Immunol Med Microbiol 64:3–12 [View Article][PubMed]
    [Google Scholar]
  15. Faix D. J., Harrison D. J., Riddle M. S., Vaughn A. F., Yingst S. L., Earhart K., Thibault G. ( 2008). Outbreak of Q fever among US military in western Iraq, June–July 2005. Clin Infect Dis 46:e65–e68 [View Article][PubMed]
    [Google Scholar]
  16. Gan Y. H., Chua K. L., Chua H. H., Liu B., Hii C. S., Chong H. L., Tan P. ( 2002). Characterization of Burkholderia pseudomallei infection and identification of novel virulence factors using a Caenorhabditis elegans host system. Mol Microbiol 44:1185–1197 [View Article][PubMed]
    [Google Scholar]
  17. Glavis-Bloom J., Muhammed M., Mylonakis E. ( 2012). Of model hosts and man: using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as model hosts for infectious disease research. Adv Exp Med Biol 710:11–17 [View Article][PubMed]
    [Google Scholar]
  18. Hackstadt T., Peacock M. G., Hitchcock P. J., Cole R. L. ( 1985). Lipopolysaccharide variation in Coxiella burnetti: intrastrain heterogeneity in structure and antigenicity. Infect Immun 48:359–365[PubMed]
    [Google Scholar]
  19. Harding C. R., Schroeder G. N., Reynolds S., Kosta A., Collins J. W., Mousnier A., Frankel G. ( 2012). Legionella pneumophila pathogenesis in the Galleria mellonella infection model. Infect Immun 80:2780–2790 [View Article][PubMed]
    [Google Scholar]
  20. Hoover T. A., Culp D. W., Vodkin M. H., Williams J. C., Thompson H. A. ( 2002). Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (crazy), of the Coxiella burnetii Nine Mile strain. Infect Immun 70:6726–6733 [View Article][PubMed]
    [Google Scholar]
  21. Huebner R. J., Hottle G. A., Robinson E. B. ( 1948). Action of streptomycin in experimental infection with Q fever. Public Health Rep 63:357–362 [View Article][PubMed]
    [Google Scholar]
  22. Islam A., Lockhart M., Stenos J., Graves S. ( 2013). The attenuated Nine Mile phase II clone 4/RSA439 strain of Coxiella burnetii is highly virulent for severe combined immunodeficient (SCID) mice. Am J Trop Med Hyg 89:800–803 [View Article][PubMed]
    [Google Scholar]
  23. Joshua G. W., Karlyshev A. V., Smith M. P., Isherwood K. E., Titball R. W., Wren B. W. ( 2003). A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology 149:3221–3229 [View Article][PubMed]
    [Google Scholar]
  24. Komura T., Yasui C., Miyamoto H., Nishikawa Y. ( 2010). Caenorhabditis elegans as an alternative model host for Legionella pneumophila, and protective effects of Bifidobacterium infantis. Appl Environ Microbiol 76:4105–4108 [View Article][PubMed]
    [Google Scholar]
  25. Laws T. R., Smith S. A., Smith M. P., Harding S. V., Atkins T. P., Titball R. W. ( 2005). The nematode Panagrellus redivivus is susceptible to killing by human pathogens at 37 °C. FEMS Microbiol Lett 250:77–83 [View Article][PubMed]
    [Google Scholar]
  26. Madariaga M. G., Rezai K., Trenholme G. M., Weinstein R. A. ( 2003). Q fever: a biological weapon in your backyard. Lancet Infect Dis 3:709–721 [View Article][PubMed]
    [Google Scholar]
  27. Marmion B. ( 2007). Q fever: the long journey to control by vaccination. Med J Aust 186:164–166[PubMed]
    [Google Scholar]
  28. Martinez E., Cantet F., Fava L., Norville I., Bonazzi M. ( 2014). Identification of OmpA, a Coxiella burnetii protein involved in host cell invasion, by multi-phenotypic high-content screening. PLoS Pathog 10:e1004013 [View Article][PubMed]
    [Google Scholar]
  29. Maurin M., Raoult D. ( 1999). Q fever. Clin Microbiol Rev 12:518–553[PubMed]
    [Google Scholar]
  30. McQuiston J. H., Childs J. E. ( 2002). Q fever in humans and animals in the United States. Vector Borne Zoonotic Dis 2:179–191 [View Article][PubMed]
    [Google Scholar]
  31. Moodie C. E., Thompson H. A., Meltzer M. I., Swerdlow D. L. ( 2008). Prophylaxis after exposure to Coxiella burnetii. Emerg Infect Dis 14:1558–1566 [View Article][PubMed]
    [Google Scholar]
  32. Moos A., Hackstadt T. ( 1987). Comparative virulence of intra- and interstrain lipopolysaccharide variants of Coxiella burnetii in the guinea pig model. Infect Immun 55:1144–1150[PubMed]
    [Google Scholar]
  33. Newton H. J., McDonough J. A., Roy C. R. ( 2013). Effector protein translocation by the Coxiella burnetii Dot/Icm type IV secretion system requires endocytic maturation of the pathogen-occupied vacuole. PLoS ONE 8:e54566 [View Article][PubMed]
    [Google Scholar]
  34. Ochoa-Repáraz J., Sentissi J., Trunkle T., Riccardi C., Pascual D. W. ( 2007). Attenuated Coxiella burnetii phase II causes a febrile response in gamma interferon knockout and Toll-like receptor 2 knockout mice and protects against reinfection. Infect Immun 75:5845–5858 [View Article][PubMed]
    [Google Scholar]
  35. Omsland A., Cockrell D. C., Howe D., Fischer E. R., Virtaneva K., Sturdevant D. E., Porcella S. F., Heinzen R. A. ( 2009). Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci U S A 106:4430–4434 [View Article][PubMed]
    [Google Scholar]
  36. Omsland A., Beare P. A., Hill J., Cockrell D. C., Howe D., Hansen B., Samuel J. E., Heinzen R. A. ( 2011). Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl Environ Microbiol 77:3720–3725 [View Article][PubMed]
    [Google Scholar]
  37. Russell-Lodrigue K. E., Zhang G. Q., McMurray D. N., Samuel J. E. ( 2006). Clinical and pathologic changes in a guinea pig aerosol challenge model of acute Q fever. Infect Immun 74:6085–6091 [View Article][PubMed]
    [Google Scholar]
  38. Schell M. A., Lipscomb L., DeShazer D. ( 2008). Comparative genomics and an insect model rapidly identify novel virulence genes of Burkholderia mallei. J Bacteriol 190:2306–2313 [View Article][PubMed]
    [Google Scholar]
  39. Scott G. H., Williams J. C., Stephenson E. H. ( 1987). Animal models in Q fever: pathological responses of inbred mice to phase I Coxiella burnetii. J Gen Microbiol 133:691–700[PubMed]
    [Google Scholar]
  40. Seitz V., Clermont A., Wedde M., Hummel M., Vilcinskas A., Schlatterer K., Podsiadlowski L. ( 2003). Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by a subtractive hybridization approach. Dev Comp Immunol 27:207–215 [View Article][PubMed]
    [Google Scholar]
  41. Shannon J. G., Howe D., Heinzen R. A. ( 2005). Virulent Coxiella burnetii does not activate human dendritic cells: role of lipopolysaccharide as a shielding molecule. Proc Natl Acad Sci U S A 102:8722–8727 [View Article][PubMed]
    [Google Scholar]
  42. Thomas R. J., Hamblin K. A., Armstrong S. J., Müller C. M., Bokori-Brown M., Goldman S., Atkins H. S., Titball R. W. ( 2013). Galleria mellonella as a model system to test the pharmacokinetics and efficacy of antibiotics against Burkholderia pseudomallei. Int J Antimicrob Agents 41:330–336 [View Article][PubMed]
    [Google Scholar]
  43. Vishwanath S., Hackstadt T. ( 1988). Lipopolysaccharide phase variation determines the complement-mediated serum susceptibility of Coxiella burnetii. Infect Immun 56:40–44[PubMed]
    [Google Scholar]
  44. Vogel H., Altincicek B., Glöckner G., Vilcinskas A. ( 2011). A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella.. BMC Genomics 12:308 [View Article][PubMed]
    [Google Scholar]
  45. Voth D. E., Heinzen R. A. ( 2007). Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell Microbiol 9:829–840 [View Article][PubMed]
    [Google Scholar]
  46. Waag D. M., Byrne W. R., Estep J., Gibbs P., Pitt M. L. M., Banfield C. M. ( 1999). Evaluation of cynomolgus (Macaca fascicularis) and rhesus (Macaca mulatta) monkeys as experimental models of acute Q fever after aerosol exposure to phase-I Coxiella burnetii. Lab Anim Sci 49:634–638[PubMed]
    [Google Scholar]
  47. Wand M. E., Müller C. M., Titball R. W., Michell S. L. ( 2011). Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol 11:11 [View Article][PubMed]
    [Google Scholar]
  48. Weber M. M., Chen C., Rowin K., Mertens K., Galvan G., Zhi H., Dealing C. M., Roman V. A., Banga S. & other authors ( 2013). Identification of Coxiella burnetii type IV secretion substrates required for intracellular replication and Coxiella-containing vacuole formation. J Bacteriol 195:3914–3924 [View Article][PubMed]
    [Google Scholar]
  49. Whelan J., Schimmer B., Schneeberger P., Meekelenkamp J., Ijff A., van der Hoek W., Robert-Du Ry van Beest Holle M. ( 2011). Q fever among culling workers, the Netherlands, 2009–2010. Emerg Infect Dis 17:1719–1723 [View Article][PubMed]
    [Google Scholar]
  50. Williams J. C., Peacock M. G., McCaul T. F. ( 1981). Immunological and biological characterization of Coxiella burnetii, phases I and II, separated from host components. Infect Immun 32:840–851[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077230-0
Loading
/content/journal/micro/10.1099/mic.0.077230-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed