1887

Abstract

infects patients with cystic fibrosis. We have previously shown that can survive in macrophages within membrane vacuoles [-containing vacuoles (BcCVs)] that preclude fusion with the lysosome. The bacterial factors involved in intracellular survival are not fully elucidated. We report here that deletion of BCAM0628, encoding a predicted low molecular weight protein tyrosine phosphatase (LMW-PTP) that is restricted to strains of the transmissible ET-12 clone, accelerates the maturation of the BcCVs. Compared to the parental strain and deletion mutants in other LMW-PTPs that are widely conserved in species, a greater proportion of BcCVs containing the Δ mutant were targeted to the lysosome. Accelerated BcCV maturation was not due to reduced intracellular viability since Δ survived and replicated in macrophages similarly to the parental strain. Therefore, BCAM0628 was referred to as (elayed hagosome aturation). We provide evidence that the Dpm protein is secreted during growth and upon macrophage infection. Dpm secretion requires an N-terminal signal peptide. Heterologous expression of Dpm in confers to this bacterium a similar phagosomal maturation delay to that found with . We demonstrate that Dpm is an inactive phosphatase, suggesting that its contribution to phagosomal maturation arrest must be unrelated to tyrosine phosphatase activity.

Funding
This study was supported by the:
  • Cystic Fibrosis Canada
  • UK Cystic Fibrosis Trust
  • Government of Canada
  • Consejo Nacional de Ciencia y Tecnología of Mexico
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077206-0
2014-07-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1332.html?itemId=/content/journal/micro/10.1099/mic.0.077206-0&mimeType=html&fmt=ahah

References

  1. Abdulrahman B. A., Khweek A. A., Akhter A., Caution K., Tazi M., Hassan H., Zhang Y., Rowland P. D., Malhotra S. & other authors ( 2013). Depletion of the ubiquitin-binding adaptor molecule SQSTM1/p62 from macrophages harboring cftr ΔF508 mutation improves the delivery of Burkholderia cenocepacia to the autophagic machinery. J Biol Chem 288:2049–2058 [View Article][PubMed]
    [Google Scholar]
  2. Al-Khodor S., Marshall-Batty K., Nair V., Ding L., Greenberg D. E., Fraser I. D. C. ( 2014). Burkholderia cenocepacia J2315 escapes to the cytosol and actively subverts autophagy in human macrophages. Cell Microbiol 16:378–395 [View Article][PubMed]
    [Google Scholar]
  3. Bach H., Papavinasasundaram K. G., Wong D., Hmama Z., Av-Gay Y. ( 2008). Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3:316–322 [View Article][PubMed]
    [Google Scholar]
  4. Black D. S., Bliska J. B. ( 1997). Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J 16:2730–2744 [View Article][PubMed]
    [Google Scholar]
  5. Bliska J. B., Clemens J. C., Dixon J. E., Falkow S. ( 1992). The Yersinia tyrosine phosphatase: specificity of a bacterial virulence determinant for phosphoproteins in the J774A.1 macrophage. J Exp Med 176:1625–1630 [View Article][PubMed]
    [Google Scholar]
  6. Böhmer F., Szedlacsek S., Tabernero L., Ostman A., den Hertog J. ( 2013). Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. FEBS J 280:413–431 [View Article][PubMed]
    [Google Scholar]
  7. Coenye T., Vandamme P. ( 2003). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729 [View Article][PubMed]
    [Google Scholar]
  8. Courtney J. M., Dunbar K. E., McDowell A., Moore J. E., Warke T. J., Stevenson M., Elborn J. S. ( 2004). Clinical outcome of Burkholderia cepacia complex infection in cystic fibrosis adults. J Cyst Fibros 3:93–98 [View Article][PubMed]
    [Google Scholar]
  9. Cowley S. C., Babakaiff R., Av-Gay Y. ( 2002). Expression and localization of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Res Microbiol 153:233–241 [View Article][PubMed]
    [Google Scholar]
  10. Cozzone A. J. ( 2005). Role of protein phosphorylation on serine/threonine and tyrosine in the virulence of bacterial pathogens. J Mol Microbiol Biotechnol 9:198–213 [View Article][PubMed]
    [Google Scholar]
  11. Cozzone A. J., Grangeasse C., Doublet P., Duclos B. ( 2004). Protein phosphorylation on tyrosine in bacteria. Arch Microbiol 181:171–181 [View Article][PubMed]
    [Google Scholar]
  12. Craig F. F., Coote J. G., Parton R., Freer J. H., Gilmour N. J. ( 1989). A plasmid which can be transferred between Escherichia coli and Pasteurella haemolytica by electroporation and conjugation. J Gen Microbiol 135:2885–2890[PubMed]
    [Google Scholar]
  13. Drevinek P., Mahenthiralingam E. ( 2010). Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 16:821–830 [View Article][PubMed]
    [Google Scholar]
  14. Dziewit L., Jazurek M., Drewniak L., Baj J., Bartosik D. ( 2007). The SXT conjugative element and linear prophage N15 encode toxin-antitoxin-stabilizing systems homologous to the tad-ata module of the Paracoccus aminophilus plasmid pAMI2. J Bacteriol 189:1983–1997 [View Article][PubMed]
    [Google Scholar]
  15. Ferreira A. S., Leitão J. H., Sousa S. A., Cosme A. M., Sá-Correia I., Moreira L. M. ( 2007). Functional analysis of Burkholderia cepacia genes bceD and bceF, encoding a phosphotyrosine phosphatase and a tyrosine autokinase, respectively: role in exopolysaccharide biosynthesis and biofilm formation. Appl Environ Microbiol 73:524–534 [View Article][PubMed]
    [Google Scholar]
  16. Ferreira A. S., Leitão J. H., Silva I. N., Pinheiro P. F., Sousa S. A., Ramos C. G., Moreira L. M. ( 2010). Distribution of cepacian biosynthesis genes among environmental and clinical Burkholderia strains and role of cepacian exopolysaccharide in resistance to stress conditions. Appl Environ Microbiol 76:441–450 [View Article][PubMed]
    [Google Scholar]
  17. Figurski D. H., Helinski D. R. ( 1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76:1648–1652 [View Article][PubMed]
    [Google Scholar]
  18. Flannagan R. S., Linn T., Valvano M. A. ( 2008). A system for the construction of targeted unmarked gene deletions in the genus Burkholderia.. Environ Microbiol 10:1652–1660 [View Article][PubMed]
    [Google Scholar]
  19. Flannagan R. S., Jaumouillé V., Huynh K. K., Plumb J. D., Downey G. P., Valvano M. A., Grinstein S. ( 2012). Burkholderia cenocepacia disrupts host cell actin cytoskeleton by inactivating Rac and Cdc42. Cell Microbiol 14:239–254 [View Article][PubMed]
    [Google Scholar]
  20. George A. M., Jones P. M., Middleton P. G. ( 2009). Cystic fibrosis infections: treatment strategies and prospects. FEMS Microbiol Lett 300:153–164 [View Article][PubMed]
    [Google Scholar]
  21. Govan J. R., Brown A. R., Jones A. M. ( 2007). Evolving epidemiology of Pseudomonas aeruginosa and the Burkholderia cepacia complex in cystic fibrosis lung infection. Future Microbiol 2:153–164 [View Article][PubMed]
    [Google Scholar]
  22. Hamad M. A., Skeldon A. M., Valvano M. A. ( 2010). Construction of aminoglycoside-sensitive Burkholderia cenocepacia strains for use in studies of intracellular bacteria with the gentamicin protection assay. Appl Environ Microbiol 76:3170–3176 [View Article][PubMed]
    [Google Scholar]
  23. Hume D. A., Ross I. L., Himes S. R., Sasmono R. T., Wells C. A., Ravasi T. ( 2002). The mononuclear phagocyte system revisited. J Leukoc Biol 72:621–627[PubMed]
    [Google Scholar]
  24. Humphreys D., Hume P. J., Koronakis V. ( 2009). The Salmonella effector SptP dephosphorylates host AAA+ ATPase VCP to promote development of its intracellular replicative niche. Cell Host Microbe 5:225–233 [View Article][PubMed]
    [Google Scholar]
  25. Huynh K. K., Plumb J. D., Downey G. P., Valvano M. A., Grinstein S. ( 2010). Inactivation of macrophage Rab7 by Burkholderia cenocepacia.. J Innate Immun 2:522–533 [View Article][PubMed]
    [Google Scholar]
  26. Jensch F., Kemper B. ( 1986). Endonuclease VII resolves Y-junctions in branched DNA in vitro. EMBO J 5:181–189[PubMed]
    [Google Scholar]
  27. Keith K. E., Hynes D. W., Sholdice J. E., Valvano M. A. ( 2009). Delayed association of the NADPH oxidase complex with macrophage vacuoles containing the opportunistic pathogen Burkholderia cenocepacia.. Microbiology 155:1004–1015 [View Article][PubMed]
    [Google Scholar]
  28. Kinchen J. M., Ravichandran K. S. ( 2008). Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9:781–795 [View Article][PubMed]
    [Google Scholar]
  29. Lamothe J., Valvano M. A. ( 2008). Burkholderia cenocepacia-induced delay of acidification and phagolysosomal fusion in cystic fibrosis transmembrane conductance regulator (CFTR)-defective macrophages. Microbiology 154:3825–3834 [View Article][PubMed]
    [Google Scholar]
  30. Lamothe J., Huynh K. K., Grinstein S., Valvano M. A. ( 2007). Intracellular survival of Burkholderia cenocepacia in macrophages is associated with a delay in the maturation of bacteria-containing vacuoles. Cell Microbiol 9:40–53 [View Article][PubMed]
    [Google Scholar]
  31. Lin S. L., Le T. X., Cowen D. S. ( 2003). SptP, a Salmonella typhimurium type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. Cell Microbiol 5:267–275 [View Article][PubMed]
    [Google Scholar]
  32. Lipuma J. J. ( 2005). Update on the Burkholderia cepacia complex. Curr Opin Pulm Med 11:528–533 [View Article][PubMed]
    [Google Scholar]
  33. Loutet S. A., Valvano M. A. ( 2010). A decade of Burkholderia cenocepacia virulence determinant research. Infect Immun 78:4088–4100 [View Article][PubMed]
    [Google Scholar]
  34. Mahenthiralingam E., Coenye T., Chung J. W., Speert D. P., Govan J. R., Taylor P., Vandamme P. ( 2000). Diagnostically and experimentally useful panel of strains from the Burkholderia cepacia complex. J Clin Microbiol 38:910–913[PubMed]
    [Google Scholar]
  35. Mahenthiralingam E., Vandamme P., Campbell M. E., Henry D. A., Gravelle A. M., Wong L. T. K., Davidson A. G. F., Wilcox P. G., Nakielna B., Speert D. P. ( 2001). Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans.. Clin Infect Dis 33:1469–1475 [View Article][PubMed]
    [Google Scholar]
  36. Mahenthiralingam E., Baldwin A., Dowson C. G. ( 2008). Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology. J Appl Microbiol 104:1539–1551 [View Article][PubMed]
    [Google Scholar]
  37. Marchler-Bauer A., Lu S., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C. & other authors ( 2011). CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:DatabaseD225–D229 [View Article][PubMed]
    [Google Scholar]
  38. Marolda C. L., Hauröder B., John M. A., Michel R., Valvano M. A. ( 1999). Intracellular survival and saprophytic growth of isolates from the Burkholderia cepacia complex in free-living amoebae. Microbiology 145:1509–1517 [View Article][PubMed]
    [Google Scholar]
  39. Moreira L. M., Videira P. A., Sousa S. A., Leitão J. H., Cunha M. V., Sá-Correia I. ( 2003). Identification and physical organization of the gene cluster involved in the biosynthesis of Burkholderia cepacia complex exopolysaccharide. Biochem Biophys Res Commun 312:323–333 [View Article][PubMed]
    [Google Scholar]
  40. Morona J. K., Morona R., Miller D. C., Paton J. C. ( 2002). Streptococcus pneumoniae capsule biosynthesis protein CpsB is a novel manganese-dependent phosphotyrosine-protein phosphatase. J Bacteriol 184:577–583 [View Article][PubMed]
    [Google Scholar]
  41. Mukhopadhyay A., Kennelly P. J. ( 2011). A low molecular weight protein tyrosine phosphatase from Synechocystis sp. strain PCC 6803: enzymatic characterization and identification of its potential substrates. J Biochem 149:551–562 [View Article][PubMed]
    [Google Scholar]
  42. Murli S., Watson R. O., Galán J. E. ( 2001). Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell Microbiol 3:795–810 [View Article][PubMed]
    [Google Scholar]
  43. Parke J. L., Gurian-Sherman D. ( 2001). Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258 [View Article][PubMed]
    [Google Scholar]
  44. Persson C., Carballeira N., Wolf-Watz H., Fällman M. ( 1997). The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J 16:2307–2318 [View Article][PubMed]
    [Google Scholar]
  45. Raugei G., Ramponi G., Chiarugi P. ( 2002). Low molecular weight protein tyrosine phosphatases: small, but smart. Cell Mol Life Sci 59:941–949 [View Article][PubMed]
    [Google Scholar]
  46. Rosales-Reyes R., Aubert D. F., Tolman J. S., Amer A. O., Valvano M. A. ( 2012a). Burkholderia cenocepacia type VI secretion system mediates escape of type II secreted proteins into the cytoplasm of infected macrophages. PLoS ONE 7:e41726 [View Article][PubMed]
    [Google Scholar]
  47. Rosales-Reyes R., Skeldon A. M., Aubert D. F., Valvano M. A. ( 2012b). The Type VI secretion system of Burkholderia cenocepacia affects multiple Rho family GTPases disrupting the actin cytoskeleton and the assembly of NADPH oxidase complex in macrophages. Cell Microbiol 14:255–273 [View Article][PubMed]
    [Google Scholar]
  48. Saldías M. S., Valvano M. A. ( 2009). Interactions of Burkholderia cenocepacia and other Burkholderia cepacia complex bacteria with epithelial and phagocytic cells. Microbiology 155:2809–2817 [View Article][PubMed]
    [Google Scholar]
  49. Sambrook J., Russell D. W. ( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  50. Schmerk C. L., Valvano M. A. ( 2013). Burkholderia multivorans survival and trafficking within macrophages. J Med Microbiol 62:173–184 [View Article][PubMed]
    [Google Scholar]
  51. Shi L., Potts M., Kennelly P. J. ( 1998). The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev 22:229–253 [View Article][PubMed]
    [Google Scholar]
  52. Ueda A., Wood T. K. ( 2009). Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5:e1000483 [View Article][PubMed]
    [Google Scholar]
  53. Valvano M. A., Rosales-Reyes R., Schmerk C. L., Ostapska H. ( 2014). Molecular mechanisms of Burkholderia cepacia complex intracellular survival in phagocytic cells. From Genomes to Function Coeyne T., Mahenthiralingam E. Norwich: Horizon Scientific Press;
    [Google Scholar]
  54. Vandamme P., Holmes B., Vancanneyt M., Coenye T., Hoste B., Coopman R., Revets H., Lauwers S., Gillis M. & other authors ( 1997). Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol 47:1188–1200 [View Article][PubMed]
    [Google Scholar]
  55. Vergunst A. C., Meijer A. H., Renshaw S. A., O’Callaghan D. ( 2010). Burkholderia cenocepacia creates an intramacrophage replication niche in zebrafish embryos, followed by bacterial dissemination and establishment of systemic infection. Infect Immun 78:1495–1508 [View Article][PubMed]
    [Google Scholar]
  56. Vincent C., Doublet P., Grangeasse C., Vaganay E., Cozzone A. J., Duclos B. ( 1999). Cells of Escherichia coli contain a protein-tyrosine kinase, Wzc, and a phosphotyrosine-protein phosphatase, Wzb. J Bacteriol 181:3472–3477[PubMed]
    [Google Scholar]
  57. Wang S., Tabernero L., Zhang M., Harms E., Van Etten R. L., Stauffacher C. V. ( 2000). Crystal structures of a low-molecular weight protein tyrosine phosphatase from Saccharomyces cerevisiae and its complex with the substrate p-nitrophenyl phosphate. Biochemistry 39:1903–1914 [View Article][PubMed]
    [Google Scholar]
  58. Wang T., Ming Z., Xiaochun W., Hong W. ( 2011). Rab7: role of its protein interaction cascades in endo-lysosomal traffic. Cell Signal 23:516–521 [View Article][PubMed]
    [Google Scholar]
  59. Waters V., Ratjen F. ( 2006). Multidrug-resistant organisms in cystic fibrosis: management and infection-control issues. Expert Rev Anti Infect Ther 4:807–819 [View Article][PubMed]
    [Google Scholar]
  60. Whitmore S. E., Lamont R. J. ( 2012). Tyrosine phosphorylation and bacterial virulence. Int J Oral Sci 4:1–6 [View Article][PubMed]
    [Google Scholar]
  61. Wong D., Bach H., Sun J., Hmama Z., Av-Gay Y. ( 2011). Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. Proc Natl Acad Sci U S A 108:19371–19376 [View Article][PubMed]
    [Google Scholar]
  62. Zhou B., He Y., Zhang X., Xu J., Luo Y., Wang Y., Franzblau S. G., Yang Z., Chan R. J. & other authors ( 2010). Targeting mycobacterium protein tyrosine phosphatase B for antituberculosis agents. Proc Natl Acad Sci U S A 107:4573–4578 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.077206-0
Loading
/content/journal/micro/10.1099/mic.0.077206-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error