1887

Abstract

The highly successful pathogen (Mtb) has evolved strategies to adapt to various stress conditions, thus promoting survival within the infected host. The two-component regulatory system (2CRS) , which has been implicated in the Mtb response to inorganic phosphate depletion, is believed to behave as an auto-regulatory bicistronic operon. Unlike other 2CRS, Mtb features an intergenic region (IR) containing several mycobacterium interspersed repetitive units (MIRU) of unknown function. In this study, we used a reporter system to study the promoter activity of the 5′ untranslated region of , and that of various numbers of MIRUs in the IR, during axenic Mtb growth in nutrient-rich broth, and upon exposure to growth-restricting conditions. Activity of the promoter was induced during phosphate depletion and nutrient starvation, and IR promoter activity under these conditions was directly proportional to the number of MIRUs present. Quantitative reverse transcriptase (qRT)-PCR analysis of exponentially growing Mtb revealed monocistronic transcription of and , and, to a lesser degree, bicistronic transcription of the operon. In addition, we observed primarily monocistronic upregulation of during phosphate depletion of Mtb, which was confirmed by Northern analysis in wild-type Mtb and by RT-PCR in a -disrupted mutant, while upregulation of in nutrient-starved Mtb was chiefly bicistronic. Our findings of differential regulation of highlight the potential regulatory role of MIRUs in the Mtb genome and provide insight into the regulatory mechanisms underlying Mtb adaptation to physiologically relevant conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.077180-0
2014-06-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1125.html?itemId=/content/journal/micro/10.1099/mic.0.077180-0&mimeType=html&fmt=ahah

References

  1. Ahmad Z., Nuermberger E. L., Tasneen R., Pinn M. L., Williams K. N., Peloquin C. A., Grosset J. H., Karakousis P. C.. ( 2010;). Comparison of the ‘Denver regimen’ against acute tuberculosis in the mouse and guinea pig. . J Antimicrob Chemother 65:, 729–734. [CrossRef][PubMed]
    [Google Scholar]
  2. Baek J. H., Lee S. Y.. ( 2007;). Transcriptome analysis of phosphate starvation response in Escherichia coli. . J Microbiol Biotechnol 17:, 244–252.[PubMed]
    [Google Scholar]
  3. Barletta R. G., Kim D. D., Snapper S. B., Bloom B. R., Jacobs W. R. Jr. ( 1992;). Identification of expression signals of the mycobacteriophages Bxb1, L1 and TM4 using the Escherichia-Mycobacterium shuttle plasmids pYUB75 and pYUB76 designed to create translational fusions to the lacZ gene. . J Gen Microbiol 138:, 23–30. [CrossRef][PubMed]
    [Google Scholar]
  4. Barry G., Squires C. L., Squires C.. ( 1979;). Control features within the rplJL-rpoBC transcription unit of Escherichia coli. . Proc Natl Acad Sci U S A 76:, 4922–4926. [CrossRef][PubMed]
    [Google Scholar]
  5. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S.. & other authors ( 1998;). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. . Nature 393:, 537–544. [CrossRef][PubMed]
    [Google Scholar]
  6. Converse P. J., Karakousis P. C., Klinkenberg L. G., Kesavan A. K., Ly L. H., Allen S. S., Grosset J. H., Jain S. K., Lamichhane G.. & other authors ( 2009;). Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models. . Infect Immun 77:, 1230–1237. [CrossRef][PubMed]
    [Google Scholar]
  7. Dahl J. L., Kraus C. N., Boshoff H. I., Doan B., Foley K., Avarbock D., Kaplan G., Mizrahi V., Rubin H., Barry C. E. III. ( 2003;). The role of RelMtb-mediated adaptation to stationary phase in long-term persistence of Mycobacterium tuberculosis in mice. . Proc Natl Acad Sci U S A 100:, 10026–10031. [CrossRef][PubMed]
    [Google Scholar]
  8. Delihas N.. ( 2011;). Impact of small repeat sequences on bacterial genome evolution. . Genome Biol Evol 3:, 959–973. [CrossRef][PubMed]
    [Google Scholar]
  9. Dorman C. J.. ( 1995;). 1995 Flemming Lecture. DNA topology and the global control of bacterial gene expression: implications for the regulation of virulence gene expression. . Microbiology 141:, 1271–1280. [CrossRef][PubMed]
    [Google Scholar]
  10. Fornwald J. A., Schmidt F. J., Adams C. W., Rosenberg M., Brawner M. E.. ( 1987;). Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon. . Proc Natl Acad Sci U S A 84:, 2130–2134. [CrossRef][PubMed]
    [Google Scholar]
  11. Glover R. T., Kriakov J., Garforth S. J., Baughn A. D., Jacobs W. R. Jr. ( 2007;). The two-component regulatory system senX3-regX3 regulates phosphate-dependent gene expression in Mycobacterium smegmatis. . J Bacteriol 189:, 5495–5503. [CrossRef][PubMed]
    [Google Scholar]
  12. Gomez J. E., McKinney J. D.. ( 2004;). M. tuberculosis persistence, latency, and drug tolerance. . Tuberculosis (Edinb) 84:, 29–44. [CrossRef][PubMed]
    [Google Scholar]
  13. Gonzalo Asensio J., Maia C., Ferrer N. L., Barilone N., Laval F., Soto C. Y., Winter N., Daffé M., Gicquel B.. & other authors ( 2006;). The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. . J Biol Chem 281:, 1313–1316. [CrossRef][PubMed]
    [Google Scholar]
  14. Grosset J.. ( 2003;). Mycobacterium tuberculosis in the extracellular compartment: an underestimated adversary. . Antimicrob Agents Chemother 47:, 833–836. [CrossRef][PubMed]
    [Google Scholar]
  15. Haapanen J. H., Kass I., Gensini G., Middlebrook G.. ( 1959;). Studies on the gaseous content of tuberculous cavities. . Am Rev Respir Dis 80:, 1–5.[PubMed]
    [Google Scholar]
  16. Haydel S. E., Malhotra V., Cornelison G. L., Clark-Curtiss J. E.. ( 2012;). The prrAB two-component system is essential for Mycobacterium tuberculosis viability and is induced under nitrogen-limiting conditions. . J Bacteriol 194:, 354–361. [CrossRef][PubMed]
    [Google Scholar]
  17. He H., Hovey R., Kane J., Singh V., Zahrt T. C.. ( 2006;). MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. . J Bacteriol 188:, 2134–2143. [CrossRef][PubMed]
    [Google Scholar]
  18. Himpens S., Locht C., Supply P.. ( 2000;). Molecular characterization of the mycobacterial SenX3-RegX3 two-component system: evidence for autoregulation. . Microbiology 146:, 3091–3098.[PubMed]
    [Google Scholar]
  19. James J. N., Hasan Z. U., Ioerger T. R., Brown A. C., Personne Y., Carroll P., Ikeh M., Tilston-Lunel N. L., Palavecino C.. & other authors ( 2012;). Deletion of SenX3-RegX3, a key two-component regulatory system of Mycobacterium smegmatis, results in growth defects under phosphate-limiting conditions. . Microbiology 158:, 2724–2731. [CrossRef][PubMed]
    [Google Scholar]
  20. Karakousis P. C., Yoshimatsu T., Lamichhane G., Woolwine S. C., Nuermberger E. L., Grosset J., Bishai W. R.. ( 2004;). Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice. . J Exp Med 200:, 647–657. [CrossRef][PubMed]
    [Google Scholar]
  21. Karakousis P. C., Williams E. P., Bishai W. R.. ( 2008;). Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. . J Antimicrob Chemother 61:, 323–331. [CrossRef][PubMed]
    [Google Scholar]
  22. Klinkenberg L. G., Lee J. H., Bishai W. R., Karakousis P. C.. ( 2010;). The stringent response is required for full virulence of Mycobacterium tuberculosis in guinea pigs. . J Infect Dis 202:, 1397–1404. [CrossRef][PubMed]
    [Google Scholar]
  23. Lamichhane G., Zignol M., Blades N. J., Geiman D. E., Dougherty A., Grosset J., Broman K. W., Bishai W. R.. ( 2003;). A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: application to Mycobacterium tuberculosis. . Proc Natl Acad Sci U S A 100:, 7213–7218. [CrossRef][PubMed]
    [Google Scholar]
  24. MacArthur I., Parreira V. R., Lepp D., Mutharia L. M., Vazquez-Boland J. A., Prescott J. F.. ( 2011;). The sensor kinase MprB is required for Rhodococcus equi virulence. . Vet Microbiol 147:, 133–141. [CrossRef][PubMed]
    [Google Scholar]
  25. Magdalena J., Vachée A., Supply P., Locht C.. ( 1998a;). Identification of a new DNA region specific for members of Mycobacterium tuberculosis complex. . J Clin Microbiol 36:, 937–943.[PubMed]
    [Google Scholar]
  26. Magdalena J., Vachée A., Supply P., Locht C.. ( 1998b;). Identification of a new DNA region specific for members of Mycobacterium tuberculosis complex. . J Clin Microbiol 36:, 937–943.[PubMed]
    [Google Scholar]
  27. Manganelli R., Dubnau E., Tyagi S., Kramer F. R., Smith I.. ( 1999;). Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. . Mol Microbiol 31:, 715–724. [CrossRef][PubMed]
    [Google Scholar]
  28. Mayuri B., Bagchi G., Das T. K., Tyagi J. S.. ( 2002;). Molecular analysis of the dormancy response in Mycobacterium smegmatis: expression analysis of genes encoding the DevR-DevS two-component system, Rv3134c and chaperone alpha-crystallin homologues. . FEMS Microbiol Lett 211:, 231–237.[PubMed]
    [Google Scholar]
  29. Miller J. F., Mekalanos J. J., Falkow S.. ( 1989;). Coordinate regulation and sensory transduction in the control of bacterial virulence. . Science 243:, 916–922. [CrossRef][PubMed]
    [Google Scholar]
  30. Millet J., Miyagi-Shiohira C., Yamane N., Sola C., Rastogi N.. ( 2007;). Assessment of mycobacterial interspersed repetitive unit-QUB markers to further discriminate the Beijing genotype in a population-based study of the genetic diversity of Mycobacterium tuberculosis clinical isolates from Okinawa, Ryukyu Islands, Japan. . J Clin Microbiol 45:, 3606–3615. [CrossRef][PubMed]
    [Google Scholar]
  31. Newbury S. F., Smith N. H., Higgins C. F.. ( 1987;). Differential mRNA stability controls relative gene expression within a polycistronic operon. . Cell 51:, 1131–1143. [CrossRef][PubMed]
    [Google Scholar]
  32. Ohno H., Zhu G., Mohan V. P., Chu D., Kohno S., Jacobs W. R. Jr, Chan J.. ( 2003;). The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis. . Cell Microbiol 5:, 637–648. [CrossRef][PubMed]
    [Google Scholar]
  33. Parish T., Smith D. A., Roberts G., Betts J., Stoker N. G.. ( 2003;). The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. . Microbiology 149:, 1423–1435. [CrossRef][PubMed]
    [Google Scholar]
  34. Rao N. N., Liu S., Kornberg A.. ( 1998;). Inorganic polyphosphate in Escherichia coli: the phosphate regulon and the stringent response. . J Bacteriol 180:, 2186–2193.[PubMed]
    [Google Scholar]
  35. Rengarajan J., Bloom B. R., Rubin E. J.. ( 2005;). Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. . Proc Natl Acad Sci U S A 102:, 8327–8332. [CrossRef][PubMed]
    [Google Scholar]
  36. Rickman L., Saldanha J. W., Hunt D. M., Hoar D. N., Colston M. J., Millar J. B., Buxton R. S.. ( 2004;). A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice. . Biochem Biophys Res Commun 314:, 259–267. [CrossRef][PubMed]
    [Google Scholar]
  37. Rifat D., Bishai W. R., Karakousis P. C.. ( 2009;). Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. . J Infect Dis 200:, 1126–1135. [CrossRef][PubMed]
    [Google Scholar]
  38. Sanyal S., Banerjee S. K., Banerjee R., Mukhopadhyay J., Kundu M.. ( 2013;). Polyphosphate kinase 1, a central node in the stress response network of Mycobacterium tuberculosis, connects the two-component systems MprAB and SenX3-RegX3 and the extracytoplasmic function sigma factor, sigma E. . Microbiology 159:, 2074–2086. [CrossRef][PubMed]
    [Google Scholar]
  39. Sun R., Converse P. J., Ko C., Tyagi S., Morrison N. E., Bishai W. R.. ( 2004;). Mycobacterium tuberculosis ECF sigma factor sigC is required for lethality in mice and for the conditional expression of a defined gene set. . Mol Microbiol 52:, 25–38. [CrossRef][PubMed]
    [Google Scholar]
  40. Supply P., Magdalena J., Himpens S., Locht C.. ( 1997;). Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. . Mol Microbiol 26:, 991–1003. [CrossRef][PubMed]
    [Google Scholar]
  41. Sureka K., Dey S., Datta P., Singh A. K., Dasgupta A., Rodrigue S., Basu J., Kundu M.. ( 2007;). Polyphosphate kinase is involved in stress-induced mprAB-sigE-rel signalling in mycobacteria. . Mol Microbiol 65:, 261–276. [CrossRef][PubMed]
    [Google Scholar]
  42. Taylor W. E., Straus D. B., Grossman A. D., Burton Z. F., Gross C. A., Burgess R. R.. ( 1984;). Transcription from a heat-inducible promoter causes heat shock regulation of the sigma subunit of E. coli RNA polymerase. . Cell 38:, 371–381. [CrossRef][PubMed]
    [Google Scholar]
  43. Thayil S. M., Morrison N., Schechter N., Rubin H., Karakousis P. C.. ( 2011;). The role of the novel exopolyphosphatase MT0516 in Mycobacterium tuberculosis drug tolerance and persistence. . PLoS ONE 6:, e28076. [CrossRef][PubMed]
    [Google Scholar]
  44. Tischler A. D., Leistikow R. L., Kirksey M. A., Voskuil M. I., McKinney J. D.. ( 2013;). Mycobacterium tuberculosis requires phosphate-responsive gene regulation to resist host immunity. . Infect Immun 81:, 317–328. [CrossRef][PubMed]
    [Google Scholar]
  45. Unniraman S., Chatterji M., Nagaraja V.. ( 2002;). DNA gyrase genes in Mycobacterium tuberculosis: a single operon driven by multiple promoters. . J Bacteriol 184:, 5449–5456. [CrossRef][PubMed]
    [Google Scholar]
  46. Via L. E., Curcic R., Mudd M. H., Dhandayuthapani S., Ulmer R. J., Deretic V.. ( 1996;). Elements of signal transduction in Mycobacterium tuberculosis: in vitro phosphorylation and in vivo expression of the response regulator MtrA. . J Bacteriol 178:, 3314–3321.[PubMed]
    [Google Scholar]
  47. Zahrt T. C., Deretic V.. ( 2000;). An essential two-component signal transduction system in Mycobacterium tuberculosis. . J Bacteriol 182:, 3832–3838. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.077180-0
Loading
/content/journal/micro/10.1099/mic.0.077180-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error