1887

Abstract

Cyclothiazomycin is a member of the thiopeptide antibiotics, which are usually complicated derivatives of ribosomally synthesized peptides. A gene cluster containing 12 ORFs identical to the cluster encoding cyclothiazomycin from 10-22 was revealed by genome sequencing in 5008. Genes and of the cluster and flanking gene were predicted to encode regulatory proteins from different families. In this study, we showed that the newly identified cluster is functional and we investigated the roles of these regulatory genes in the regulation of cyclothiazomycin biosynthesis. We determined that , but not or , is critical for cyclothiazomycin biosynthesis. The transcriptional start point of was located to a thymidine 54 nt upstream of the start codon. Inactivation of abrogated the production of cyclothiazomycin, and synthesis could be restored by reintroducing into the mutant strain. Gene expression analyses indicated that SHJG8833 regulates a consecutive set of seven genes from to , whose products are predicted to be involved in different steps in the construction of the main framework of cyclothiazomycin. Transcriptional analysis indicated that these seven genes may form two operons, and . Gel-shift analysis demonstrated that the DNA-binding domain of SHJG8833 binds the promoters of and and sequences internal to and , and a conserved binding sequence was deduced. These results indicate that SHJG8833 is a positive regulator that controls cyclothiazomycin biosynthesis by activating structural genes in the cluster.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.076901-0
2014-07-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1379.html?itemId=/content/journal/micro/10.1099/mic.0.076901-0&mimeType=html&fmt=ahah

References

  1. Aigle B., Pang X., Decaris B., Leblond P.. ( 2005;). Involvement of AlpV, a new member of the Streptomyces antibiotic regulatory protein family, in regulation of the duplicated type II polyketide synthase alp gene cluster in Streptomyces ambofaciens. . J Bacteriol 187:, 2491–2500. [CrossRef][PubMed]
    [Google Scholar]
  2. Aoki M., Ohtsuka T., Yamada M., Ohba Y., Yoshizaki H., Yasuno H., Sano T., Watanabe J., Yokose K., Seto H.. ( 1991;). Cyclothiazomycin, a novel polythiazole-containing peptide with renin inhibitory activity. Taxonomy, fermentation, isolation and physico-chemical characterization. . J Antibiot (Tokyo) 44:, 582–588. [CrossRef][PubMed]
    [Google Scholar]
  3. Barragán M. J., Blázquez B., Zamarro M. T., Mancheño J. M., García J. L., Díaz E., Carmona M.. ( 2005;). BzdR, a repressor that controls the anaerobic catabolism of benzoate in Azoarcus sp. CIB, is the first member of a new subfamily of transcriptional regulators. . J Biol Chem 280:, 10683–10694. [CrossRef][PubMed]
    [Google Scholar]
  4. Bentley S. D., Chater K. F., Cerdeño-Tárraga A. M., Challis G. L., Thomson N. R., James K. D., Harris D. E., Quail M. A., Kieser H.. & other authors ( 2002;). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). . Nature 417:, 141–147. [CrossRef][PubMed]
    [Google Scholar]
  5. Bibb M. J.. ( 2005;). Regulation of secondary metabolism in streptomycetes. . Curr Opin Microbiol 8:, 208–215. [CrossRef][PubMed]
    [Google Scholar]
  6. Caffrey P., Lynch S., Flood E., Finnan S., Oliynyk M.. ( 2001;). Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes. . Chem Biol 8:, 713–723. [CrossRef][PubMed]
    [Google Scholar]
  7. Chen J., Xie J.. ( 2011;). Role and regulation of bacterial LuxR-like regulators. . J Cell Biochem 112:, 2694–2702. [CrossRef][PubMed]
    [Google Scholar]
  8. Chen S., Huang X., Zhou X., Bai L., He J., Jeong K. J., Lee S. Y., Deng Z.. ( 2003;). Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. . Chem Biol 10:, 1065–1076. [CrossRef][PubMed]
    [Google Scholar]
  9. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D.. ( 2003;). Multiple sequence alignment with the clustal series of programs. . Nucleic Acids Res 31:, 3497–3500. [CrossRef][PubMed]
    [Google Scholar]
  10. Cundliffe E.. ( 2008;). Control of tylosin biosynthesis in Streptomyces fradiae. . J Microbiol Biotechnol 18:, 1485–1491.[PubMed]
    [Google Scholar]
  11. Feitelson J. S., Malpartida F., Hopwood D. A.. ( 1985;). Genetic and biochemical characterization of the red gene cluster of Streptomyces coelicolor A3(2). . J Gen Microbiol 131:, 2431–2441.[PubMed]
    [Google Scholar]
  12. Fernández-Moreno M. A., Caballero J. L., Hopwood D. A., Malpartida F.. ( 1991;). The act cluster contains regulatory and antibiotic export genes, direct targets for translational control by the bldA tRNA gene of Streptomyces. . Cell 66:, 769–780. [CrossRef][PubMed]
    [Google Scholar]
  13. Gallegos M. T., Schleif R., Bairoch A., Hofmann K., Ramos J. L.. ( 1997;). Arac/XylS family of transcriptional regulators. . Microbiol Mol Biol Rev 61:, 393–410.[PubMed]
    [Google Scholar]
  14. Gregory M. A., Till R., Smith M. C.. ( 2003;). Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. . J Bacteriol 185:, 5320–5323. [CrossRef][PubMed]
    [Google Scholar]
  15. He H., Hovey R., Kane J., Singh V., Zahrt T. C.. ( 2006;). MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. . J Bacteriol 188:, 2134–2143. [CrossRef][PubMed]
    [Google Scholar]
  16. He Y., Wang Z., Bai L., Liang J., Zhou X., Deng Z.. ( 2010;). Two pHZ1358-derivative vectors for efficient gene knockout in Streptomyces. . J Microbiol Biotechnol 20:, 678–682. [CrossRef][PubMed]
    [Google Scholar]
  17. Hopwood D. A.. ( 2007;). Streptomyces in Nature and Medicine. Oxford:: Oxford University Press;.
    [Google Scholar]
  18. Iwasa T., Yamamoto H., Shibata M.. ( 1970;). Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var., validamycin-producing organism. . J Antibiot (Tokyo) 23:, 595–602. [CrossRef][PubMed]
    [Google Scholar]
  19. Jian X., Pang X., Yu Y., Zhou X., Deng Z.. ( 2006;). Identification of genes necessary for jinggangmycin biosynthesis from Streptomyces hygroscopicus 10-22. . Antonie van Leeuwenhoek 90:, 29–39. [CrossRef][PubMed]
    [Google Scholar]
  20. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. ( 2000;). Practical Streptomyces Genetics. Norwich:: John Innes Foundation;.
    [Google Scholar]
  21. Lazdunski A. M., Ventre I., Sturgis J. N.. ( 2004;). Regulatory circuits and communication in Gram-negative bacteria. . Nat Rev Microbiol 2:, 581–592. [CrossRef][PubMed]
    [Google Scholar]
  22. Liu G., Chater K. F., Chandra G., Niu G., Tan H.. ( 2013;). Molecular regulation of antibiotic biosynthesis in Streptomyces. . Microbiol Mol Biol Rev 77:, 112–143. [CrossRef][PubMed]
    [Google Scholar]
  23. McCarty R. M., Bandarian V.. ( 2008;). Deciphering deazapurine biosynthesis: pathway for pyrrolopyrimidine nucleosides toyocamycin and sangivamycin. . Chem Biol 15:, 790–798. [CrossRef][PubMed]
    [Google Scholar]
  24. Narva K. E., Feitelson J. S.. ( 1990;). Nucleotide sequence and transcriptional analysis of the redD locus of Streptomyces coelicolor A3(2). . J Bacteriol 172:, 326–333.[PubMed]
    [Google Scholar]
  25. Pang X., Zhou X., Sun Y., Deng Z.. ( 2002;). Physical map of the linear chromosome of Streptomyces hygroscopicus 10-22 deduced by analysis of overlapping large chromosomal deletions. . J Bacteriol 184:, 1958–1965. [CrossRef][PubMed]
    [Google Scholar]
  26. Pang X., Aigle B., Girardet J. M., Mangenot S., Pernodet J. L., Decaris B., Leblond P.. ( 2004;). Functional angucycline-like antibiotic gene cluster in the terminal inverted repeats of the Streptomyces ambofaciens linear chromosome. . Antimicrob Agents Chemother 48:, 575–588. [CrossRef][PubMed]
    [Google Scholar]
  27. Pang X., Vu P., Byrd T. F., Ghanny S., Soteropoulos P., Mukamolova G. V., Wu S., Samten B., Howard S. T.. ( 2007;). Evidence for complex interactions of stress-associated regulons in an mprAB deletion mutant of Mycobacterium tuberculosis. . Microbiology 153:, 1229–1242. [CrossRef][PubMed]
    [Google Scholar]
  28. Pang X., Samten B., Cao G., Wang X., Tvinnereim A. R., Chen X. L., Howard S. T.. ( 2013;). MprAB regulates the espA operon in Mycobacterium tuberculosis and modulates ESX-1 function and host cytokine response. . J Bacteriol 195:, 66–75. [CrossRef][PubMed]
    [Google Scholar]
  29. Qin Z., Peng K., Zhou X., Liang R., Zhou Q., Chen H., Hopwood D. A., Kieser T., Deng Z.. ( 1994;). Development of a gene cloning system for Streptomyces hygroscopicus subsp. yingchengensis, a producer of three useful antifungal compounds, by elimination of three barriers to DNA transfer. . J Bacteriol 176:, 2090–2095.[PubMed]
    [Google Scholar]
  30. Sambrook J. R., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  31. Sekurova O. N., Brautaset T., Sletta H., Borgos S. E., Jakobsen M. Ø. M., Ellingsen T. E., Strøm A. R., Valla S., Zotchev S. B.. ( 2004;). In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. . J Bacteriol 186:, 1345–1354. [CrossRef][PubMed]
    [Google Scholar]
  32. Stutzman-Engwall K. J., Otten S. L., Hutchinson C. R.. ( 1992;). Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. . J Bacteriol 174:, 144–154.[PubMed]
    [Google Scholar]
  33. Wang J., Yu Y., Tang K., Liu W., He X., Huang X., Deng Z.. ( 2010;). Identification and analysis of the biosynthetic gene cluster encoding the thiopeptide antibiotic cyclothiazomycin in Streptomyces hygroscopicus 10-22. . Appl Environ Microbiol 76:, 2335–2344. [CrossRef][PubMed]
    [Google Scholar]
  34. Wilson D. J., Xue Y., Reynolds K. A., Sherman D. H.. ( 2001;). Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. . J Bacteriol 183:, 3468–3475. [CrossRef][PubMed]
    [Google Scholar]
  35. Wu H., Qu S., Lu C., Zheng H., Zhou X., Bai L., Deng Z.. ( 2012;). Genomic and transcriptomic insights into the thermo-regulated biosynthesis of validamycin in Streptomyces hygroscopicus 5008. . BMC Genomics 13:, 337. [CrossRef][PubMed]
    [Google Scholar]
  36. Xia T. H., Jiao R. S.. ( 1986;). Studies on glutamine synthetase from Streptomyces hygroscopicus var. jinggangensis. . Sci Sin [B] 29:, 379–388.[PubMed]
    [Google Scholar]
  37. Yu Y., Bai L., Minagawa K., Jian X., Li L., Li J., Chen S., Cao E., Mahmud T.. & other authors ( 2005;). Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. . Appl Environ Microbiol 71:, 5066–5076. [CrossRef][PubMed]
    [Google Scholar]
  38. Zhang S., Zhao H., Liu J.. ( 1982;). Studies on the agricultural antibiotics 5102 II. Isolation and characterization of antibiotic 5102–2. . Acta Microbiol Sin 22:, 145–150.
    [Google Scholar]
  39. Zhao K. X., Huang Y., Chen X., Wang N. X., Liu S. J.. ( 2010;). PcaO positively regulates pcaHG of the β-ketoadipate pathway in Corynebacterium glutamicum. . J Bacteriol 192:, 1565–1572. [CrossRef][PubMed]
    [Google Scholar]
  40. Zhou Q., Liu J.. ( 1981;). The anti-fungal study of antibiotics 5102. . Antibiotics 6:, 1–6.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.076901-0
Loading
/content/journal/micro/10.1099/mic.0.076901-0
Loading

Data & Media loading...

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error