1887

Abstract

membrane-bound ferritin (MbfA) is a member of the erythrin (Er)–vacuolar iron transport family. The MbfA protein has an Er or ferritin-like domain at its N terminus and has been predicted to have five transmembrane segments in its C-terminal region. Analysis of protein localization using PhoA and LacZ reporter proteins supported the view that the N-terminal di-iron site is located in the cytoplasm whilst the C-terminal end faces the periplasm. An mutant strain had 1.5-fold higher total iron content than the WT strain. Furthermore, multi-copy expression of reduced total iron content two- and threefold in WT and mutant backgrounds, respectively. These results suggest that MbfA may function as an iron exporter rather than an iron storage protein. The mutant showed 10-fold increased sensitivity to the iron-activated antibiotic streptonigrin, implying that the mutant had increased accumulation of intracellular free iron. Growth of the mutant was reduced in the presence of high iron under acidic conditions. The expression of was induced highly in cells grown in iron-replete medium at pH 5.5, further supporting the view that is involved in the response to iron under acidic conditions. MbfA may play a protective role against increased free iron in the cytoplasm through iron binding and export, thus preventing iron-induced toxicity via the Fenton reaction.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.076802-0
2014-05-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/863.html?itemId=/content/journal/micro/10.1099/mic.0.076802-0&mimeType=html&fmt=ahah

References

  1. Andrews S. C..( 2010;). The Ferritin-like superfamily: evolution of the biological iron storeman from a rubrerythrin-like ancestor. Biochim Biophys Acta1800:691–705 [CrossRef][PubMed]
    [Google Scholar]
  2. Bates C. S., Toukoki C., Neely M. N., Eichenbaum Z..( 2005;). Characterization of MtsR, a new metal regulator in group A streptococcus, involved in iron acquisition and virulence. Infect Immun73:5743–5753 [CrossRef][PubMed]
    [Google Scholar]
  3. Bhubhanil S., Niamyim P., Sukchawalit R., Mongkolsuk S..( 2014;). Cysteine desulphurase-encoding gene sufS2 is required for the repressor function of RirA and oxidative resistance in Agrobacterium tumefaciens. Microbiology160:79–90 [CrossRef][PubMed]
    [Google Scholar]
  4. Boughammoura A., Matzanke B. F., Böttger L., Reverchon S., Lesuisse E., Expert D., Franza T..( 2008;). Differential role of ferritins in iron metabolism and virulence of the plant-pathogenic bacterium Erwinia chrysanthemi 3937. J Bacteriol190:1518–1530 [CrossRef][PubMed]
    [Google Scholar]
  5. Brickman E., Beckwith J..( 1975;). Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and phi80 transducing phages. J Mol Biol96:307–316 [CrossRef][PubMed]
    [Google Scholar]
  6. Cangelosi G. A., Abest E., Martinetti G., Nester E. W..( 1991;). Genetic analysis of Agrobacterium. Methods Enzymol204:384–397 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen C. Y., Morse S. A..( 1999;). Neisseria gonorrhoeae bacterioferritin: structural heterogeneity, involvement in iron storage and protection against oxidative stress. Microbiology145:2967–2975[PubMed]
    [Google Scholar]
  8. Chen S., Bleam W. F., Hickey W. J..( 2010;). Molecular analysis of two bacterioferritin genes, bfrα and bfrβ, in the model rhizobacterium Pseudomonas putida KT2440. Appl Environ Microbiol76:5335–5343 [CrossRef][PubMed]
    [Google Scholar]
  9. Cunneen M. M., Reeves P. R..( 2008;). Membrane topology of the Salmonella enterica serovar Typhimurium Group B O-antigen translocase Wzx. FEMS Microbiol Lett287:76–84 [CrossRef][PubMed]
    [Google Scholar]
  10. Daniels C., Vindurampulle C., Morona R..( 1998;). Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol28:1211–1222 [CrossRef][PubMed]
    [Google Scholar]
  11. Derman A. I., Beckwith J..( 1991;). Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm. J Bacteriol173:7719–7722[PubMed]
    [Google Scholar]
  12. Fones H., Preston G. M..( 2013;). The impact of transition metals on bacterial plant disease. FEMS Microbiol Rev37:495–519 [CrossRef][PubMed]
    [Google Scholar]
  13. Froshauer S., Green G. N., Boyd D., McGovern K., Beckwith J..( 1988;). Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of Escherichia coli. J Mol Biol200:501–511 [CrossRef][PubMed]
    [Google Scholar]
  14. Grant S. G., Jessee J., Bloom F. R., Hanahan D..( 1990;). Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci U S A87:4645–4649 [CrossRef][PubMed]
    [Google Scholar]
  15. Grass G., Otto M., Fricke B., Haney C. J., Rensing C., Nies D. H., Munkelt D..( 2005;). FieF (YiiP) from Escherichia coli mediates decreased cellular accumulation of iron and relieves iron stress. Arch Microbiol183:9–18 [CrossRef][PubMed]
    [Google Scholar]
  16. Gregory E. M., Fridovich I..( 1973;). Oxygen toxicity and the superoxide dismutase. J Bacteriol114:1193–1197[PubMed]
    [Google Scholar]
  17. Haardt M., Bremer E..( 1996;). Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli. J Bacteriol178:5370–5381[PubMed]
    [Google Scholar]
  18. Hibbing M. E., Fuqua C..( 2011;). Antiparallel and interlinked control of cellular iron levels by the Irr and RirA regulators of Agrobacterium tumefaciens. J Bacteriol193:3461–3472 [CrossRef][PubMed]
    [Google Scholar]
  19. Hofmann K., Stoffel W..( 1993;). TMBASE – a database of membrane spanning protein segments. Biol Chem Hoppe Seyler374:166
    [Google Scholar]
  20. Imlay J. A., Chin S. M., Linn S..( 1988;). Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science240:640–642 [CrossRef][PubMed]
    [Google Scholar]
  21. Jones D. T..( 2007;). Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics23:538–544 [CrossRef][PubMed]
    [Google Scholar]
  22. Käll L., Krogh A., Sonnhammer E. L..( 2004;). A combined transmembrane topology and signal peptide prediction method. J Mol Biol338:1027–1036 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim S. A., Punshon T., Lanzirotti A., Li L., Alonso J. M., Ecker J. R., Kaplan J., Guerinot M. L..( 2006;). Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science314:1295–1298 [CrossRef][PubMed]
    [Google Scholar]
  24. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M..( 1995;). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene166:175–176 [CrossRef][PubMed]
    [Google Scholar]
  25. Lee C., Li P., Inouye H., Brickman E. R., Beckwith J..( 1989;). Genetic studies on the inability of beta-galactosidase to be translocated across the Escherichia coli cytoplasmic membrane. J Bacteriol171:4609–4616[PubMed]
    [Google Scholar]
  26. Li L., Chen O. S., McVey Ward D., Kaplan J..( 2001;). CCC1 is a transporter that mediates vacuolar iron storage in yeast. J Biol Chem276:29515–29519 [CrossRef][PubMed]
    [Google Scholar]
  27. Luo Z. Q., Clemente T. E., Farrand S. K..( 2001;). Construction of a derivative of Agrobacterium tumefaciens C58 that does not mutate to tetracycline resistance. Mol Plant Microbe Interact14:98–103 [CrossRef][PubMed]
    [Google Scholar]
  28. Manoil C..( 1990;). Analysis of protein localization by use of gene fusions with complementary properties. J Bacteriol172:1035–1042[PubMed]
    [Google Scholar]
  29. Manoil C., Beckwith J..( 1986;). A genetic approach to analyzing membrane protein topology. Science233:1403–1408 [CrossRef][PubMed]
    [Google Scholar]
  30. Miller J. H..( 1972;). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  31. Ngok-Ngam P., Ruangkiattikul N., Mahavihakanont A., Virgem S. S., Sukchawalit R., Mongkolsuk S..( 2009;). Roles of Agrobacterium tumefaciens RirA in iron regulation, oxidative stress response, and virulence. J Bacteriol191:2083–2090 [CrossRef][PubMed]
    [Google Scholar]
  32. Nilavongse A., Brondijk T. H., Overton T. W., Richardson D. J., Leach E. R., Cole J. A..( 2006;). The NapF protein of the Escherichia coli periplasmic nitrate reductase system: demonstration of a cytoplasmic location and interaction with the catalytic subunit, NapA. Microbiology152:3227–3237 [CrossRef][PubMed]
    [Google Scholar]
  33. Peuser V., Remes B., Klug G..( 2012;). Role of the Irr protein in the regulation of iron metabolism in Rhodobacter sphaeroides. PLoS ONE7:e42231 [CrossRef][PubMed]
    [Google Scholar]
  34. Rodionov D. A., Gelfand M. S., Todd J. D., Curson A. R., Johnston A. W..( 2006;). Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLOS Comput Biol2:e163 [CrossRef][PubMed]
    [Google Scholar]
  35. Ruangkiattikul N., Bhubhanil S., Chamsing J., Niamyim P., Sukchawalit R., Mongkolsuk S..( 2012;). Agrobacterium tumefaciens membrane-bound ferritin plays a role in protection against hydrogen peroxide toxicity and is negatively regulated by the iron response regulator. FEMS Microbiol Lett329:87–92 [CrossRef][PubMed]
    [Google Scholar]
  36. Rudolph G., Semini G., Hauser F., Lindemann A., Friberg M., Hennecke H., Fischer H. M..( 2006;). The iron control element, acting in positive and negative control of iron-regulated Bradyrhizobium japonicum genes, is a target for the Irr protein. J Bacteriol188:733–744 [CrossRef][PubMed]
    [Google Scholar]
  37. Sambrook J., Fritsch E. F., Maniatis T..( 1989;). Molecular Cloning: A Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  38. Santos P. M., Di Bartolo I., Blatny J. M., Zennaro E., Valla S..( 2001;). New broad-host-range promoter probe vectors based on the plasmid RK2 replicon. FEMS Microbiol Lett195:91–96 [CrossRef][PubMed]
    [Google Scholar]
  39. Sarsero J. P., Pittard A. J..( 1995;). Membrane topology analysis of Escherichia coli K-12 Mtr permease by alkaline phosphatase and beta-galactosidase fusions. J Bacteriol177:297–306[PubMed]
    [Google Scholar]
  40. Todd J. D., Sawers G., Rodionov D. A., Johnston A. W..( 2006;). The Rhizobium leguminosarum regulator IrrA affects the transcription of a wide range of genes in response to Fe availability. Mol Genet Genomics275:564–577 [CrossRef][PubMed]
    [Google Scholar]
  41. Tusnády G. E., Simon I..( 2001;). The HMMTOP transmembrane topology prediction server. Bioinformatics17:849–850 [CrossRef][PubMed]
    [Google Scholar]
  42. Velayudhan J., Castor M., Richardson A., Main-Hester K. L., Fang F. C..( 2007;). The role of ferritins in the physiology of Salmonella enterica sv. Typhimurium: a unique role for ferritin B in iron-sulphur cluster repair and virulence. Mol Microbiol63:1495–1507 [CrossRef][PubMed]
    [Google Scholar]
  43. Waidner B., Greiner S., Odenbreit S., Kavermann H., Velayudhan J., Stähler F., Guhl J., Bissé E., van Vliet A. H..& other authors ( 2002;). Essential role of ferritin Pfr in Helicobacter pylori iron metabolism and gastric colonization. Infect Immun70:3923–3929 [CrossRef][PubMed]
    [Google Scholar]
  44. Walkenhorst W. F., Merzlyakov M., Hristova K., Wimley W. C..( 2009;). Polar residues in transmembrane helices can decrease electrophoretic mobility in polyacrylamide gels without causing helix dimerization. Biochim Biophys Acta1788:1321–1331 [CrossRef][PubMed]
    [Google Scholar]
  45. Wojtaszek P..( 1997;). Oxidative burst: an early plant response to pathogen infection. Biochem J322:681–692[PubMed]
    [Google Scholar]
  46. Yeowell H. N., White J. R..( 1982;). Iron requirement in the bactericidal mechanism of streptonigrin. Antimicrob Agents Chemother22:961–968 [CrossRef][PubMed]
    [Google Scholar]
  47. Zhu J., Oger P. M., Schrammeijer B., Hooykaas P. J., Farrand S. K., Winans S. C..( 2000;). The bases of crown gall tumorigenesis. J Bacteriol182:3885–3895 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.076802-0
Loading
/content/journal/micro/10.1099/mic.0.076802-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error