1887

Abstract

, which is known to produce large amounts of succinate during fermentation of hexoses, was able to grow on C-dicarboxylates such as fumarate under aerobic and anaerobic conditions. Anaerobic growth on fumarate was stimulated by glycerol and the major product was succinate, indicating the involvement of fumarate respiration similar to succinate production from glucose. The aerobic growth on C-dicarboxylates and the transport proteins involved were studied. Fumarate was oxidized to acetate. The genome of encodes six proteins with similarity to secondary C-dicarboxylate transporters, including transporters of the Dcu (C-dicarboxylate uptake), DcuC (C-dicarboxylate uptake C), DASS (divalent anion : sodium symporter) and TDT (tellurite resistance dicarboxylate transporter) family. From the cloned genes, Asuc_0304 of the DASS family protein was able to restore aerobic growth on C-dicarboxylates in a C-dicarboxylate-transport-negative strain. The strain regained succinate or fumarate uptake, which was dependent on the electrochemical proton potential and the presence of Na. The transport had an optimum pH ~7, indicating transport of the dianionic C-dicarboxylates. Transport competition experiments suggested substrate specificity for fumarate and succinate. The transport characteristics for C-dicarboxylate uptake by cells of aerobically grown were similar to those of Asuc_0304 expressed in , suggesting that Asuc_0304 has an important role in aerobic fumarate uptake in . Asuc_0304 has sequence similarity to bacterial Na-dicarboxylate cotransporters and contains the carboxylate-binding signature. Asuc_0304 was named SdcA (odium-coupled C-iarboxylate transporter from . ).

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.076786-0
2014-07-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1533.html?itemId=/content/journal/micro/10.1099/mic.0.076786-0&mimeType=html&fmt=ahah

References

  1. Bergeron M. J., Clémençon B., Hediger M. A., Markovich D.. ( 2013;). SLC13 family of Na+-coupled di- and tri-carboxylate/sulfate transporters. . Mol Aspects Med 34:, 299–312. [CrossRef][PubMed]
    [Google Scholar]
  2. Chen J., Zhu X., Tan Z., Xu H., Tang J., Xiao D., Zhang X.. ( 2014;). Activating C4-dicarboxylate transporters DcuB and DcuC for improving succinate production. . Appl Microbiol Biotechnol 98:, 2197–2205. [CrossRef][PubMed]
    [Google Scholar]
  3. Davies S. J., Golby P., Omrani D., Broad S. A., Harrington V. L., Guest J. R., Kelly D. J., Andrews S. C.. ( 1999;). Inactivation and regulation of the aerobic C4-dicarboxylate transport (dctA) gene of Escherichia coli. . J Bacteriol 181:, 5624–5635.[PubMed]
    [Google Scholar]
  4. Dimroth P., Jockel P., Schmid M.. ( 2001;). Coupling mechanism of the oxaloacetate decarboxylase Na+ pump. . Biochim Biophys Acta 1505:, 1–14. [CrossRef][PubMed]
    [Google Scholar]
  5. Fischer M., Zhang Q. Y., Hubbard R. E., Thomas G. H.. ( 2010;). Caught in a TRAP: substrate-binding proteins in secondary transport. . Trends Microbiol 18:, 471–478. [CrossRef][PubMed]
    [Google Scholar]
  6. Golby P., Kelly D. J., Guest J. R., Andrews S. C.. ( 1998;). Topological analysis of DcuA, an anaerobic C4-dicarboxylate transporter of Escherichia coli. . J Bacteriol 180:, 4821–4827.[PubMed]
    [Google Scholar]
  7. Groeneveld M., Detert Oude Weme R. G., Duurkens R. H., Slotboom D. J.. ( 2010;). Biochemical characterization of the C4-dicarboxylate transporter DctA from Bacillus subtilis. . J Bacteriol 192:, 2900–2907. [CrossRef][PubMed]
    [Google Scholar]
  8. Guettler M. V., Rumler D., Jain M. K.. ( 1999;). Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. . Int J Syst Bacteriol 49:, 207–216. [CrossRef][PubMed]
    [Google Scholar]
  9. Hall J. A., Pajor A. M.. ( 2007;). Functional reconstitution of SdcS, a Na+-coupled dicarboxylate carrier protein from Staphylococcus aureus. . J Bacteriol 189:, 880–885. [CrossRef][PubMed]
    [Google Scholar]
  10. Janausch I. G., Kim O. B., Unden G.. ( 2001;). DctA- and Dcu-independent transport of succinate in Escherichia coli: contribution of diffusion and of alternative carriers. . Arch Microbiol 176:, 224–230. [CrossRef][PubMed]
    [Google Scholar]
  11. Karinou E., Compton E. L., Morel M., Javelle A.. ( 2013;). The Escherichia coli SLC26 homologue YchM (DauA) is a C4-dicarboxylic acid transporter. . Mol Microbiol 87:, 623–640. [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O. B., Unden G.. ( 2007;). The L-tartrate/succinate antiporter TtdT (YgjE) of l-tartrate fermentation in Escherichia coli. . J Bacteriol 189:, 1597–1603. [CrossRef][PubMed]
    [Google Scholar]
  13. Kim P., Laivenieks M., Vieille C., Zeikus J. G.. ( 2004;). Effect of overexpression of Actinobacillus succinogenes phosphoenolpyruvate carboxykinase on succinate production in Escherichia coli. . Appl Environ Microbiol 70:, 1238–1241. [CrossRef][PubMed]
    [Google Scholar]
  14. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. & other authors ( 2007;). Clustal W and Clustal X version 2.0. . Bioinformatics 23:, 2947–2948. [CrossRef][PubMed]
    [Google Scholar]
  15. Mancusso R., Gregorio G. G., Liu Q., Wang D.-N.. ( 2012;). Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. . Nature 491:, 622–626. [CrossRef][PubMed]
    [Google Scholar]
  16. Markovich D.. ( 2012;). Sodium-sulfate/carboxylate cotransporters (SLC13). . Curr Top Membr 70, 239–256.
    [Google Scholar]
  17. McKinlay J. B., Vieille C.. ( 2008;). 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations. . Metab Eng 10:, 55–68. [CrossRef][PubMed]
    [Google Scholar]
  18. McKinlay J. B., Shachar-Hill Y., Zeikus J. G., Vieille C.. ( 2007a;). Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers. . Metab Eng 9:, 177–192. [CrossRef][PubMed]
    [Google Scholar]
  19. McKinlay J. B., Vieille C., Zeikus J. G.. ( 2007b;). Prospects for a bio-based succinate industry. . Appl Microbiol Biotechnol 76:, 727–740. [CrossRef][PubMed]
    [Google Scholar]
  20. McKinlay J. B., Laivenieks M., Schindler B. D., McKinlay A. A., Siddaramappa S., Challacombe J. F., Lowry S. R., Clum A., Lapidus A. L.. & other authors ( 2010;). A genomic perspective on the potential of Actinobacillus succinogenes for industrial succinate production. . BMC Genomics 11:, 680. [CrossRef][PubMed]
    [Google Scholar]
  21. Miller J. H.. ( 1992;). A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  22. Mulligan C., Fischer M., Thomas G. H.. ( 2011;). Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. . FEMS Microbiol Rev 35:, 68–86. [CrossRef][PubMed]
    [Google Scholar]
  23. Nicholls D., Ferguson S.. ( 2002;). Bioenergetics, , 3rd edn.. New York:: Academic Press;.
    [Google Scholar]
  24. Pfaffl M. W.. ( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. . Nucleic Acids Res 29:, e45. [CrossRef][PubMed]
    [Google Scholar]
  25. Pos K. M., Dimroth P., Bott M.. ( 1998;). The Escherichia coli citrate carrier CitT: a member of a novel eubacterial transporter family related to the 2-oxoglutarate/malate translocator from spinach chloroplasts. . J Bacteriol 180:, 4160–4165.[PubMed]
    [Google Scholar]
  26. Prakash S., Cooper G., Singhi S., Saier M. H. Jr. ( 2003;). The ion transporter superfamily. . Biochim Biophys Acta 1618:, 79–92. [CrossRef][PubMed]
    [Google Scholar]
  27. Rabus R., Jack D. L., Kelly D. J., Saier M. H. Jr. ( 1999;). TRAP transporters: an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters. . Microbiology 145:, 3431–3445.[PubMed]
    [Google Scholar]
  28. Rozen S., Skaletsky H.. ( 1999;). Primer3 on the WWW for general users and for biologist programmers. . Methods Mol Biol 132:, 365–386. [CrossRef][PubMed]
    [Google Scholar]
  29. Russell J. B., Rychlik J. L.. ( 2001;). Factors that alter rumen microbial ecology. . Science 292:, 1119–1122. [CrossRef][PubMed]
    [Google Scholar]
  30. Six S., Andrews S. C., Unden G., Guest J. R.. ( 1994;). Escherichia coli possesses two homologous anaerobic C4-dicarboxylate membrane transporters (DcuA and DcuB) distinct from the aerobic dicarboxylate transport system (Dct). . J Bacteriol 176:, 6470–6478.[PubMed]
    [Google Scholar]
  31. Strickler M. A., Hall J. A., Gaiko O., Pajor A. M.. ( 2009;). Functional characterization of a Na+-coupled dicarboxylate transporter from Bacillus licheniformis.. Biochim Biophys Acta 1788:, 2489–2496. [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  33. Thakker C., Martínez I., San K. Y., Bennett G. N.. ( 2012;). Succinate production in Escherichia coli.. Biotechnol J 7:, 213–224. [CrossRef][PubMed]
    [Google Scholar]
  34. Van der Werf M. J., Guettler M. V., Jain M. K., Zeikus J. G.. ( 1997;). Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. . Arch Microbiol 167:, 332–342. [CrossRef][PubMed]
    [Google Scholar]
  35. Youn J.-W., Jolkver E., Krämer R., Marin K., Wendisch V. F.. ( 2008;). Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum. . J Bacteriol 190:, 6458–6466. [CrossRef][PubMed]
    [Google Scholar]
  36. Youn J.-W., Jolkver E., Krämer R., Marin K., Wendisch V. F.. ( 2009;). Characterization of the dicarboxylate transporter DctA in Corynebacterium glutamicum. . J Bacteriol 191:, 5480–5488. [CrossRef][PubMed]
    [Google Scholar]
  37. Zientz E., Six S., Unden G.. ( 1996;). Identification of a third secondary carrier (DcuC) for anaerobic C4-dicarboxylate transport in Escherichia coli: roles of the three Dcu carriers in uptake and exchange. . J Bacteriol 178:, 7241–7247.[PubMed]
    [Google Scholar]
  38. Zientz E., Janausch I. G., Six S., Unden G.. ( 1999;). Functioning of DcuC as the C4-dicarboxylate carrier during glucose fermentation by Escherichia coli. . J Bacteriol 181:, 3716–3720.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.076786-0
Loading
/content/journal/micro/10.1099/mic.0.076786-0
Loading

Data & Media loading...

Supplements

Supplementary Material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error