1887

Abstract

The heterocystous cyanobacterium sp. strain PCC 7120 grows as linear multicellular filaments that can contain hundreds of cells. Heterocysts, which are specialized cells for nitrogen fixation, are regularly intercalated among photosynthetic vegetative cells, and these cells are metabolically dependent on each other. Thus, multicellularity is essential for diazotrophic growth of heterocystous cyanobacteria. In sp. strain PCC 7120, the gene, which is required to limit filament length, is induced by nitrogen deprivation. The transcripts extend to the gene, which lies on the opposite DNA strand and could possess dual functionality, mRNAs for and antisense RNAs for . In the present study, we found that NrrA, a nitrogen-regulated response regulator, directly regulated expression of . Induction of by nitrogen deprivation was abolished by the disruption. NrrA specifically bound to the promoter region of , and recognized an inverted repeat sequence. Thus, it is concluded that NrrA controls expression of mRNAs for and antisense RNAs for in response to nitrogen deprivation.

Funding
This study was supported by the:
  • Japan Science and Technology Agency
  • Japan Society for the Promotion of Science (Award 23603005)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.076703-0
2014-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/844.html?itemId=/content/journal/micro/10.1099/mic.0.076703-0&mimeType=html&fmt=ahah

References

  1. Azuma M., Osanai T., Hirai M. Y., Tanaka K. ( 2011). A response regulator Rre37 and an RNA polymerase sigma factor SigE represent two parallel pathways to activate sugar catabolism in a cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 52:404–412 [View Article][PubMed]
    [Google Scholar]
  2. Browning D. F., Busby S. J. W. ( 2004). The regulation of bacterial transcription initiation. Nat Rev Microbiol 2:57–65 [View Article][PubMed]
    [Google Scholar]
  3. Buikema W. J., Haselkorn R. ( 1991). Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. Genes Dev 5:321–330 [View Article][PubMed]
    [Google Scholar]
  4. Buikema W. J., Haselkorn R. ( 2001). Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. Proc Natl Acad Sci U S A 98:2729–2734 [View Article][PubMed]
    [Google Scholar]
  5. Du Y., Cai Y., Hou S., Xu X. ( 2012). Identification of the HetR recognition sequence upstream of hetZ in Anabaena sp. strain PCC 7120. J Bacteriol 194:2297–2306 [View Article][PubMed]
    [Google Scholar]
  6. Ehira S., Ohmori M. ( 2006a). NrrA, a nitrogen-responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 59:1692–1703 [View Article][PubMed]
    [Google Scholar]
  7. Ehira S., Ohmori M. ( 2006b). NrrA directly regulates expression of hetR during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 188:8520–8525 [View Article][PubMed]
    [Google Scholar]
  8. Ehira S., Ohmori M. ( 2011). NrrA, a nitrogen-regulated response regulator protein, controls glycogen catabolism in the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. J Biol Chem 286:38109–38114 [View Article][PubMed]
    [Google Scholar]
  9. Ehira S., Ohmori M. ( 2012). The pknH gene restrictively expressed in heterocysts is required for diazotrophic growth in the cyanobacterium Anabaena sp. strain PCC 7120. Microbiology 158:1437–1443 [View Article][PubMed]
    [Google Scholar]
  10. Ernst A., Reich S., Böger P. ( 1990). Modification of dinitrogenase reductase in the cyanobacterium Anabaena variabilis due to C starvation and ammonia. J Bacteriol 172:748–755[PubMed]
    [Google Scholar]
  11. Flores E., Herrero A. ( 2010). Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8:39–50 [View Article][PubMed]
    [Google Scholar]
  12. Flores E., Pernil R., Muro-Pastor A. M., Mariscal V., Maldener I., Lechno-Yossef S., Fan Q., Wolk C. P., Herrero A. ( 2007). Septum-localized protein required for filament integrity and diazotrophy in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 189:3884–3890 [View Article][PubMed]
    [Google Scholar]
  13. Fujisawa T., Okamoto S., Katayama T., Nakao M., Yoshimura H., Kajiya-Kanegae H., Yamamoto S., Yano C., Yanaka Y. & other authors ( 2014). CyanoBase and RhizoBase: databases of manually curated annotations for cyanobacterial and rhizobial genomes. Nucleic Acids Res 42:D666–D670 [View Article][PubMed]
    [Google Scholar]
  14. Herrero A., Muro-Pastor A. M., Valladares A., Flores E. ( 2004). Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol Rev 28:469–487 [View Article][PubMed]
    [Google Scholar]
  15. Huang X., Dong Y., Zhao J. ( 2004). HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. Proc Natl Acad Sci U S A 101:4848–4853 [View Article][PubMed]
    [Google Scholar]
  16. Khudyakov I. Y., Golden J. W. ( 2001). Identification and inactivation of three group 2 sigma factor genes in Anabaena sp. strain PCC 7120. J Bacteriol 183:6667–6675 [View Article][PubMed]
    [Google Scholar]
  17. Kumar K., Mella-Herrera R. A., Golden J. W. ( 2010). Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2:a000315 [View Article][PubMed]
    [Google Scholar]
  18. Merino-Puerto V., Mariscal V., Mullineaux C. W., Herrero A., Flores E. ( 2010). Fra proteins influencing filament integrity, diazotrophy and localization of septal protein SepJ in the heterocyst-forming cyanobacterium Anabaena sp.. Mol Microbiol 75:1159–1170 [View Article][PubMed]
    [Google Scholar]
  19. Merino-Puerto V., Herrero A., Flores E. ( 2013). Cluster of genes that encode positive and negative elements influencing filament length in a heterocyst-forming cyanobacterium. J Bacteriol 195:3957–3966 [View Article][PubMed]
    [Google Scholar]
  20. Mitschke J., Vioque A., Haas F., Hess W. R., Muro-Pastor A. M. ( 2011). Dynamics of transcriptional start site selection during nitrogen stress-induced cell differentiation in Anabaena sp. PCC7120. Proc Natl Acad Sci U S A 108:20130–20135 [View Article][PubMed]
    [Google Scholar]
  21. Muro-Pastor A. M., Olmedo-Verd E., Flores E. ( 2006). All4312, an NtcA-regulated two-component response regulator in Anabaena sp. strain PCC 7120. FEMS Microbiol Lett 256:171–177 [View Article][PubMed]
    [Google Scholar]
  22. Nayar A. S., Yamaura H., Rajagopalan R., Risser D. D., Callahan S. M. ( 2007). FraG is necessary for filament integrity and heterocyst maturation in the cyanobacterium Anabaena sp. strain PCC 7120. Microbiology 153:601–607 [View Article][PubMed]
    [Google Scholar]
  23. Pinto F. L., Thapper A., Sontheim W., Lindblad P. ( 2009). Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol Biol 10:79 [View Article][PubMed]
    [Google Scholar]
  24. Wolk C. P., Ernst A., Elhai J. ( 1994). Heterocyst metabolism and development. The Molecular Biology of Cyanobacteria769–823 Bryant D. A. Dordrecht: Springer; [View Article]
    [Google Scholar]
  25. Wurtzel O., Sesto N., Mellin J. R., Karunker I., Edelheit S., Bécavin C., Archambaud C., Cossart P., Sorek R. ( 2012). Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol Syst Biol 8:583 [View Article][PubMed]
    [Google Scholar]
  26. Yoon H. S., Golden J. W. ( 1998). Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935–938 [View Article][PubMed]
    [Google Scholar]
  27. Zhang W., Du Y., Khudyakov I., Fan Q., Gao H., Ning D., Wolk C. P., Xu X. ( 2007). A gene cluster that regulates both heterocyst differentiation and pattern formation in Anabaena sp. strain PCC 7120. Mol Microbiol 66:1429–1443 [View Article][PubMed]
    [Google Scholar]
  28. Zhang J.-Y., Chen W.-L., Zhang C.-C. ( 2009). hetR and patS, two genes necessary for heterocyst pattern formation, are widespread in filamentous nonheterocyst-forming cyanobacteria. Microbiology 155:1418–1426 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.076703-0
Loading
/content/journal/micro/10.1099/mic.0.076703-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error