1887

Abstract

Bacteria contain small non-coding RNAs (ncRNAs) that are typically responsible for altering transcription, translation or mRNA stability. ncRNAs are important because they often regulate virulence factors and susceptibility to various stresses. Here, the regulation of a recently described ncRNA of DC3000, (now referred to as ), was investigated. A putative RpoE binding site was identified upstream of in strain DC3000. RpoE is shown to regulate the expression of . Also, deletion of results in increased sensitivity to hydrogen peroxide compared with the wild-type strain, suggesting that plays a role in susceptibility to oxidative stress. Furthermore, expression of is shown to be influenced by , suggesting that this ncRNA plays a role in alginate biosynthesis. Structural and comparative genomic analyses show this ncRNA is well conserved among the pseudomonads. The findings provide new information on the regulation and role of this ncRNA in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.076497-0
2014-05-01
2020-01-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/941.html?itemId=/content/journal/micro/10.1099/mic.0.076497-0&mimeType=html&fmt=ahah

References

  1. Alfano J. R., Collmer A.. ( 1997;). The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol179:5655–5662[PubMed]
    [Google Scholar]
  2. Bailey T. L., Boden M., Buske F. A., Frith M., Grant C. E., Clementi L., Ren J., Li W. W., Noble W. S.. ( 2009;). meme suite: tools for motif discovery and searching. Nucleic Acids Res37:Web ServerW202–W208 [CrossRef][PubMed]
    [Google Scholar]
  3. Beisel C. L., Storz G.. ( 2011;). The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli . Mol Cell41:286–297 [CrossRef][PubMed]
    [Google Scholar]
  4. Bronstein P. A., Marrichi M., Cartinhour S., Schneider D. J., DeLisa M. P.. ( 2005;). Identification of a twin-arginine translocation system in Pseudomonas syringae pv. tomato DC3000 and its contribution to pathogenicity and fitness. J Bacteriol187:8450–8461 [CrossRef][PubMed]
    [Google Scholar]
  5. Bronstein P. A., Filiatrault M. J., Myers C. R., Rutzke M., Schneider D. J., Cartinhour S. W.. ( 2008;). Global transcriptional responses of Pseudomonas syringae DC3000 to changes in iron bioavailability in vitro . BMC Microbiol8:209 [CrossRef][PubMed]
    [Google Scholar]
  6. Bus J. S., Gibson J. E.. ( 1982;). Mechanisms of superoxide radical-mediated toxicity. J Toxicol Clin Toxicol19:689–697 [CrossRef][PubMed]
    [Google Scholar]
  7. Busch A., Richter A. S., Backofen R.. ( 2008;). IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics24:2849–2856 [CrossRef][PubMed]
    [Google Scholar]
  8. Cao B., Liu J., Qin G., Tian S.. ( 2012;). Oxidative stress acts on special membrane proteins to reduce the viability of Pseudomonas syringae pv tomato . J Proteome Res11:4927–4938 [CrossRef][PubMed]
    [Google Scholar]
  9. Crooks G. E., Hon G., Chandonia J. M., Brenner S. E.. ( 2004;). WebLogo: a sequence logo generator. Genome Res14:1188–1190 [CrossRef][PubMed]
    [Google Scholar]
  10. Cuppels D. A.. ( 1986;). Generation and characterization of Tn5 insertion mutations in Pseudomonas syringae pv. tomato . Appl Environ Microbiol51:323–327[PubMed]
    [Google Scholar]
  11. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  12. Eggenhofer F., Tafer H., Stadler P. F., Hofacker I. L.. ( 2011;). RNApredator: fast accessibility-based prediction of sRNA targets. Nucleic Acids Res39:supplW149–W154 [CrossRef][PubMed]
    [Google Scholar]
  13. Feil H., Feil W. S., Chain P., Larimer F., DiBartolo G., Copeland A., Lykidis A., Trong S., Nolan M.. & other authors ( 2005;). Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci U S A102:11064–11069 [CrossRef][PubMed]
    [Google Scholar]
  14. Filiatrault M. J., Stodghill P. V., Bronstein P. A., Moll S., Lindeberg M., Grills G., Schweitzer P., Wang W., Schroth G. P.. & other authors ( 2010;). Transcriptome analysis of Pseudomonas syringae identifies new genes, noncoding RNAs, and antisense activity. J Bacteriol192:2359–2372 [CrossRef][PubMed]
    [Google Scholar]
  15. Filiatrault M. J., Stodghill P. V., Myers C. R., Bronstein P. A., Butcher B. G., Lam H., Grills G., Schweitzer P., Wang W.. & other authors ( 2011;). Genome-wide identification of transcriptional start sites in the plant pathogen Pseudomonas syringae pv. tomato str. DC3000. PLoS ONE6:e29335 [CrossRef][PubMed]
    [Google Scholar]
  16. Filiatrault M. J., Stodghill P. V., Wilson J., Butcher B. G., Chen H., Myers C. R., Cartinhour S. W.. ( 2013;). CrcZ and CrcX regulate carbon source utilization in Pseudomonas syringae pathovar tomato strain DC3000. RNA Biol10:245–255 [CrossRef][PubMed]
    [Google Scholar]
  17. Firoved A. M., Boucher J. C., Deretic V.. ( 2002;). Global genomic analysis of AlgU (σE)-dependent promoters (sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis. J Bacteriol184:1057–1064 [CrossRef][PubMed]
    [Google Scholar]
  18. Gottesman S.. ( 2004;). The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol58:303–328 [CrossRef][PubMed]
    [Google Scholar]
  19. Gottesman S., McCullen C. A., Guillier M., Vanderpool C. K., Majdalani N., Benhammou J., Thompson K. M., FitzGerald P. C., Sowa N. A., FitzGerald D. J.. ( 2006;). Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol71:1–11 [CrossRef][PubMed]
    [Google Scholar]
  20. Griffiths-Jones S., Moxon S., Marshall M., Khanna A., Eddy S. R., Bateman A.. ( 2005;). Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res33:D121–D124 [CrossRef][PubMed]
    [Google Scholar]
  21. Gruber A. R., Lorenz R., Bernhart S. H., Neuböck R., Hofacker I. L.. ( 2008;). The Vienna RNA websuite. Nucleic Acids Res36:Web ServerW70–W74 [CrossRef][PubMed]
    [Google Scholar]
  22. Hirano S. S., Upper C. D.. ( 2000;). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae—a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev64:624–653 [CrossRef][PubMed]
    [Google Scholar]
  23. Joardar V., Lindeberg M., Jackson R. W., Selengut J., Dodson R., Brinkac L. M., Daugherty S. C., Deboy R., Durkin A. S.. & other authors ( 2005;). Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J Bacteriol187:6488–6498 [CrossRef][PubMed]
    [Google Scholar]
  24. Jones A. K., Fulcher N. B., Balzer G. J., Urbanowski M. L., Pritchett C. L., Schurr M. J., Yahr T. L., Wolfgang M. C.. ( 2010;). Activation of the Pseudomonas aeruginosa AlgU regulon through mucA mutation inhibits cyclic AMP/Vfr signaling. J Bacteriol192:5709–5717 [CrossRef][PubMed]
    [Google Scholar]
  25. Joyce C. M., Grindley N. D.. ( 1982;). Identification of two genes immediately downstream from the polA gene of Escherichia coli . J Bacteriol152:1211–1219[PubMed]
    [Google Scholar]
  26. Kanack K. J., Runyen-Janecky L. J., Ferrell E. P., Suh S. J., West S. E.. ( 2006;). Characterization of DNA-binding specificity and analysis of binding sites of the Pseudomonas aeruginosa global regulator, Vfr, a homologue of the Escherichia coli cAMP receptor protein. Microbiology152:3485–3496 [CrossRef][PubMed]
    [Google Scholar]
  27. Keith L. M., Bender C. L.. ( 1999;). AlgT (ζ22) controls alginate production and tolerance to environmental stress in Pseudomonas syringae . J Bacteriol181:7176–7184[PubMed]
    [Google Scholar]
  28. Kidambi S. P., Sundin G. W., Palmer D. A., Chakrabarty A. M., Bender C. L.. ( 1995;). Copper as a signal for alginate synthesis in Pseudomonas syringae pv. syringae. Appl Environ Microbiol61:2172–2179[PubMed]
    [Google Scholar]
  29. King E. O., Ward M. K., Raney D. E.. ( 1954;). Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med44:301–307[PubMed]
    [Google Scholar]
  30. Kloek A. P., Brooks D. M., Kunkel B. N.. ( 2000;). A dsbA mutant of Pseudomonas syringae exhibits reduced virulence and partial impairment of type III secretion. Mol Plant Pathol1:139–150 [CrossRef][PubMed]
    [Google Scholar]
  31. Lindeberg M., Myers C. R., Collmer A., Schneider D. J.. ( 2008;). Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. Mol Plant Microbe Interact21:685–700 [CrossRef][PubMed]
    [Google Scholar]
  32. Lindgren P. B.. ( 1997;). The role of hrp genes during plant–bacterial interactions. Annu Rev Phytopathol35:129–152 [CrossRef][PubMed]
    [Google Scholar]
  33. Markel E., Maciak C., Butcher B. G., Myers C. R., Stodghill P., Bao Z., Cartinhour S., Swingle B.. ( 2011;). An extracytoplasmic function sigma factor-mediated cell surface signaling system in Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to heterologous siderophores. J Bacteriol193:5775–5783 [CrossRef][PubMed]
    [Google Scholar]
  34. Martin D. W., Schurr M. J., Yu H., Deretic V.. ( 1994;). Analysis of promoters controlled by the putative sigma factor AlgU regulating conversion to mucoidy in Pseudomonas aeruginosa: relationship to sigma E and stress response. J Bacteriol176:6688–6696[PubMed]
    [Google Scholar]
  35. Massé E., Majdalani N., Gottesman S.. ( 2003;). Regulatory roles for small RNAs in bacteria. Curr Opin Microbiol6:120–124 [CrossRef][PubMed]
    [Google Scholar]
  36. Mellgren E. M., Kloek A. P., Kunkel B. N.. ( 2009;). Mqo, a tricarboxylic acid cycle enzyme, is required for virulence of Pseudomonas syringae pv. tomato strain DC3000 on Arabidopsis thaliana . J Bacteriol191:3132–3141 [CrossRef][PubMed]
    [Google Scholar]
  37. Miguel E., Poza-Carrión C., López-Solanilla E., Aguilar I., Llama-Palacios A., García-Olmedo F., Rodríguez-Palenzuela P.. ( 2000;). Evidence against a direct antimicrobial role of H2O2 in the infection of plants by Erwinia chrysanthemi . Mol Plant Microbe Interact13:421–429 [CrossRef][PubMed]
    [Google Scholar]
  38. Milojevic T., Grishkovskaya I., Sonnleitner E., Djinovic-Carugo K., Bläsi U.. ( 2013;). The Pseudomonas aeruginosa catabolite repression control protein Crc is devoid of RNA binding activity. PLoS ONE8:e64609 [CrossRef][PubMed]
    [Google Scholar]
  39. Moll S., Schneider D. J., Stodghill P., Myers C. R., Cartinhour S. W., Filiatrault M. J.. ( 2010;). Construction of an rsmX co-variance model and identification of five rsmX non-coding RNAs in Pseudomonas syringae pv. tomato DC3000. RNA Biol7:508–516 [CrossRef][PubMed]
    [Google Scholar]
  40. Møller T., Franch T., Udesen C., Gerdes K., Valentin-Hansen P.. ( 2002;). Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev16:1696–1706 [CrossRef][PubMed]
    [Google Scholar]
  41. Moreno R., Ruiz-Manzano A., Yuste L., Rojo F.. ( 2007;). The Pseudomonas putida Crc global regulator is an RNA binding protein that inhibits translation of the AlkS transcriptional regulator. Mol Microbiol64:665–675 [CrossRef][PubMed]
    [Google Scholar]
  42. Nawrocki E. P., Kolbe D. L., Eddy S. R.. ( 2009;). Infernal 1.0: inference of RNA alignments. Bioinformatics25:1335–1337 [CrossRef][PubMed]
    [Google Scholar]
  43. Nelson K. E., Weinel C., Paulsen I. T., Dodson R. J., Hilbert H., Martins dos Santos V. A., Fouts D. E., Gill S. R., Pop M.. & other authors ( 2002;). Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol4:799–808 [CrossRef][PubMed]
    [Google Scholar]
  44. Park S. H., Butcher B. G., Anderson Z., Pellegrini N., Bao Z., D’Amico K., Filiatrault M. J.. ( 2013;). Analysis of the small RNA P16/RgsA in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000. Microbiology159:296–306 [CrossRef][PubMed]
    [Google Scholar]
  45. Péchy-Tarr M., Bottiglieri M., Mathys S., Lejbølle K. B., Schnider-Keel U., Maurhofer M., Keel C.. ( 2005;). RpoN (σ54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact18:260–272 [CrossRef][PubMed]
    [Google Scholar]
  46. Polayes D. A., Rice P. W., Dahlberg J. E.. ( 1988a;). DNA polymerase I activity in Escherichia coli is influenced by spot 42 RNA. J Bacteriol170:2083–2088[PubMed]
    [Google Scholar]
  47. Polayes D. A., Rice P. W., Garner M. M., Dahlberg J. E.. ( 1988b;). Cyclic AMP-cyclic AMP receptor protein as a repressor of transcription of the spf gene of Escherichia coli . J Bacteriol170:3110–3114[PubMed]
    [Google Scholar]
  48. Preiter K., Brooks D. M., Penaloza-Vazquez A., Sreedharan A., Bender C. L., Kunkel B. N.. ( 2005;). Novel virulence gene of Pseudomonas syringae pv. tomato strain DC3000. J Bacteriol187:7805–7814 [CrossRef][PubMed]
    [Google Scholar]
  49. Pressler U., Staudenmaier H., Zimmermann L., Braun V.. ( 1988;). Genetics of the iron dicitrate transport system of Escherichia coli . J Bacteriol170:2716–2724[PubMed]
    [Google Scholar]
  50. Rojo F.. ( 2010;). Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev34:658–684[PubMed]
    [Google Scholar]
  51. Schäfer A., Tauch A., Jäger W., Kalinowski J., Thierbach G., Pühler A.. ( 1994;). Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum . Gene145:69–73 [CrossRef][PubMed]
    [Google Scholar]
  52. Schagat T., Paguio A., Kopish K.. ( 2007;). Normalizing genetic reporter assays: approaches and considerations for increasing consistency and statistical significance. Cell Notes179–12
    [Google Scholar]
  53. Schenk A., Weingart H., Ullrich M. S.. ( 2008;). The alternative sigma factor AlgT, but not alginate synthesis, promotes in planta multiplication of Pseudomonas syringae pv. glycinea. Microbiology154:413–421 [CrossRef][PubMed]
    [Google Scholar]
  54. Schnider-Keel U., Lejbølle K. B., Baehler E., Haas D., Keel C.. ( 2001;). The sigma factor AlgU (AlgT) controls exopolysaccharide production and tolerance towards desiccation and osmotic stress in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol67:5683–5693 [CrossRef][PubMed]
    [Google Scholar]
  55. Schurr M. J., Yu H., Boucher J. C., Hibler N. S., Deretic V.. ( 1995;). Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (sigma E) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa . J Bacteriol177:5670–5679[PubMed]
    [Google Scholar]
  56. Sharma C. M., Darfeuille F., Plantinga T. H., Vogel J.. ( 2007;). A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev21:2804–2817 [CrossRef][PubMed]
    [Google Scholar]
  57. Simpson J. A., Smith S. E., Dean R. T.. ( 1989;). Scavenging by alginate of free radicals released by macrophages. Free Radic Biol Med6:347–353 [CrossRef][PubMed]
    [Google Scholar]
  58. Storz G.. ( 2002;). An expanding universe of noncoding RNAs. Science296:1260–1263 [CrossRef][PubMed]
    [Google Scholar]
  59. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S., Hufnagle W. O., Kowalik D. J.. & other authors ( 2000;). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature406:959–964 [CrossRef][PubMed]
    [Google Scholar]
  60. Suh S. J., Runyen-Janecky L. J., Maleniak T. C., Hager P., MacGregor C. H., Zielinski-Mozny N. A., Phibbs P. V. Jr, West S. E.. ( 2002;). Effect of vfr mutation on global gene expression and catabolite repression control of Pseudomonas aeruginosa . Microbiology148:1561–1569[PubMed]
    [Google Scholar]
  61. Swingle B., Thete D., Moll M., Myers C. R., Schneider D. J., Cartinhour S.. ( 2008;). Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads. Mol Microbiol68:871–889 [CrossRef][PubMed]
    [Google Scholar]
  62. Tjaden B., Goodwin S. S., Opdyke J. A., Guillier M., Fu D. X., Gottesman S., Storz G.. ( 2006;). Target prediction for small, noncoding RNAs in bacteria. Nucleic Acids Res34:2791–2802 [CrossRef][PubMed]
    [Google Scholar]
  63. Vencato M., Tian F., Alfano J. R., Buell C. R., Cartinhour S., DeClerck G. A., Guttman D. S., Stavrinides J., Joardar V.. & other authors ( 2006;). Bioinformatics-enabled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A. Mol Plant Microbe Interact19:1193–1206 [CrossRef][PubMed]
    [Google Scholar]
  64. Vogel J., Luisi B. F.. ( 2011;). Hfq and its constellation of RNA. Nat Rev Microbiol9:578–589 [CrossRef][PubMed]
    [Google Scholar]
  65. Vogel J., Wagner E. G.. ( 2007;). Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol10:262–270 [CrossRef][PubMed]
    [Google Scholar]
  66. Wassarman K. M.. ( 2002;). Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes. Cell109:141–144 [CrossRef][PubMed]
    [Google Scholar]
  67. Waters L. S., Storz G.. ( 2009;). Regulatory RNAs in bacteria. Cell136:615–628 [CrossRef][PubMed]
    [Google Scholar]
  68. West S. E., Sample A. K., Runyen-Janecky L. J.. ( 1994;). The vfr gene product, required for Pseudomonas aeruginosa exotoxin A and protease production, belongs to the cyclic AMP receptor protein family. J Bacteriol176:7532–7542[PubMed]
    [Google Scholar]
  69. Whalen M. C., Innes R. W., Bent A. F., Staskawicz B. J.. ( 1991;). Identification of Pseudomonas syringae pathogens of Arabidopsis and a bacterial locus determining avirulence on both Arabidopsis and soybean. Plant Cell3:49–59[PubMed][CrossRef]
    [Google Scholar]
  70. Will S., Reiche K., Hofacker I. L., Stadler P. F., Backofen R.. ( 2007;). Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol3:e65 [CrossRef][PubMed]
    [Google Scholar]
  71. Wood L. F., Ohman D. E.. ( 2012;). Identification of genes in the σ22 regulon of Pseudomonas aeruginosa required for cell envelope homeostasis in either the planktonic or the sessile mode of growth. MBio3:e00094-12 [CrossRef][PubMed]
    [Google Scholar]
  72. Wozniak D. J., Ohman D. E.. ( 1994;). Transcriptional analysis of the Pseudomonas aeruginosa genes algR, algB, and algD reveals a hierarchy of alginate gene expression which is modulated by algT . J Bacteriol176:6007–6014[PubMed]
    [Google Scholar]
  73. Yu H., Schurr M. J., Deretic V.. ( 1995;). Functional equivalence of Escherichia coli sigma E and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa . J Bacteriol177:3259–3268[PubMed]
    [Google Scholar]
  74. Yu J., Peñaloza-Vázquez A., Chakrabarty A. M., Bender C. L.. ( 1999;). Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol33:712–720 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.076497-0
Loading
/content/journal/micro/10.1099/mic.0.076497-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error