1887

Abstract

A temperature-sensitive mutation in designated , encodes a missense mutation at position 142 [His (CAT) to Leu (CTT)] of ribosomal protein L2. The strain carrying the mutation grew more slowly than the wild-type, even at low temperatures, probably due to the formation of defective 70S ribosomes and the accumulation of incomplete 50S subunits (50S* subunits). Gel analysis indicated that amounts of L2 protein and also of L16 protein were reduced in ribosomes prepared from the mutant 90 min after increasing the growth temperature to 45 °C. These results suggest that the assembly of the L16 protein into the 50S subunit requires the native L2 protein. The H142L mutation in the defective L2 protein affected sporulation as well as growth, even at the permissive temperature. A suppressor mutation that restored both growth and sporulation of the mutant at low temperature was identified as a single base deletion located immediately upstream of the gene that resulted in an increase in its transcription. Furthermore, genetic analysis showed that enhanced synthesis of YaaA restores the functionality of L2 (H142L) by facilitating its assembly into 50S subunits.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.076463-0
2014-06-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1040.html?itemId=/content/journal/micro/10.1099/mic.0.076463-0&mimeType=html&fmt=ahah

References

  1. Akanuma G., Nanamiya H., Natori Y., Yano K., Suzuki S., Omata S., Ishizuka M., Sekine Y., Kawamura F.. ( 2012;). Inactivation of ribosomal protein genes in Bacillus subtilis reveals importance of each ribosomal protein for cell proliferation and cell differentiation. . J Bacteriol 194:, 6282–6291. [CrossRef][PubMed]
    [Google Scholar]
  2. Akanuma G., Suzuki S., Yano K., Nanamiya H., Natori Y., Namba E., Watanabe K., Tagami K., Takeda T.. & other authors ( 2013;). Single mutations introduced in the essential ribosomal proteins L3 and S10 cause a sporulation defect in Bacillus subtilis. . J Gen Appl Microbiol 59:, 105–117. [CrossRef][PubMed]
    [Google Scholar]
  3. Ashikaga S., Nanamiya H., Ohashi Y., Kawamura F.. ( 2000;). Natural genetic competence in Bacillus subtilis natto OK2. . J Bacteriol 182:, 2411–2415. [CrossRef][PubMed]
    [Google Scholar]
  4. Ban N., Nissen P., Hansen J., Moore P. B., Steitz T. A.. ( 2000;). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. . Science 289:, 905–920. [CrossRef][PubMed]
    [Google Scholar]
  5. Charollais J., Pflieger D., Vinh J., Dreyfus M., Iost I.. ( 2003;). The DEAD-box RNA helicase SrmB is involved in the assembly of 50S ribosomal subunits in Escherichia coli. . Mol Microbiol 48:, 1253–1265. [CrossRef][PubMed]
    [Google Scholar]
  6. Chodavarapu S., Felczak M. M., Kaguni J. M.. ( 2011;). Two forms of ribosomal protein L2 of Escherichia coli that inhibit DnaA in DNA replication. . Nucleic Acids Res 39:, 4180–4191. [CrossRef][PubMed]
    [Google Scholar]
  7. Diedrich G., Spahn C. M., Stelzl U., Schäfer M. A., Wooten T., Bochkariov D. E., Cooperman B. S., Traut R. R., Nierhaus K. H.. ( 2000;). Ribosomal protein L2 is involved in the association of the ribosomal subunits, tRNA binding to A and P sites and peptidyl transfer. . EMBO J 19:, 5241–5250. [CrossRef][PubMed]
    [Google Scholar]
  8. Diges C. M., Uhlenbeck O. C.. ( 2001;). Escherichia coli DbpA is an RNA helicase that requires hairpin 92 of 23S rRNA. . EMBO J 20:, 5503–5512. [CrossRef][PubMed]
    [Google Scholar]
  9. Dohme F., Nierhaus K. H.. ( 1976;). Total reconstitution and assembly of 50 S subunits from Escherichia coli ribosomes in vitro.. J Mol Biol 107:, 585–599. [CrossRef][PubMed]
    [Google Scholar]
  10. Egebjerg J., Christiansen J., Garrett R. A.. ( 1991;). Attachment sites of primary binding proteins L1, L2 and L23 on 23 S ribosomal RNA of Escherichia coli. . J Mol Biol 222:, 251–264. [CrossRef][PubMed]
    [Google Scholar]
  11. Gulle H., Hoppe E., Osswald M., Greuer B., Brimacombe R., Stöffler G.. ( 1988;). RNA-protein cross-linking in Escherichia coli 50S ribosomal subunits; determination of sites on 23S RNA that are cross-linked to proteins L2, L4, L24 and L27 by treatment with 2-iminothiolane. . Nucleic Acids Res 16:, 815–832. [CrossRef][PubMed]
    [Google Scholar]
  12. Harada N., Maemura K., Yamasaki N., Kimura M.. ( 1998;). Identification by site-directed mutagenesis of amino acid residues in ribosomal protein L2 that are essential for binding to 23S ribosomal RNA. . Biochim Biophys Acta 1429:, 176–186. [CrossRef][PubMed]
    [Google Scholar]
  13. Hayashi T., Tahara M., Iwasaki K., Kouzuma Y., Kimura M.. ( 2002;). Requirement for C-terminal extension to the RNA binding domain for efficient RNA binding by ribosomal protein L2. . Biosci Biotechnol Biochem 66:, 682–684. [CrossRef][PubMed]
    [Google Scholar]
  14. Herold M., Nierhaus K. H.. ( 1987;). Incorporation of six additional proteins to complete the assembly map of the 50 S subunit from Escherichia coli ribosomes. . J Biol Chem 262:, 8826–8833.[PubMed]
    [Google Scholar]
  15. Hwang J., Inouye M.. ( 2006;). The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli. . Mol Microbiol 61:, 1660–1672. [CrossRef][PubMed]
    [Google Scholar]
  16. Jiang M., Datta K., Walker A., Strahler J., Bagamasbad P., Andrews P. C., Maddock J. R.. ( 2006;). The Escherichia coli GTPase CgtAE is involved in late steps of large ribosome assembly. . J Bacteriol 188:, 6757–6770. [CrossRef][PubMed]
    [Google Scholar]
  17. Jiang M., Sullivan S. M., Walker A. K., Strahler J. R., Andrews P. C., Maddock J. R.. ( 2007;). Identification of novel Escherichia coli ribosome-associated proteins using isobaric tags and multidimensional protein identification techniques. . J Bacteriol 189:, 3434–3444. [CrossRef][PubMed]
    [Google Scholar]
  18. Jones P. G., Mitta M., Kim Y., Jiang W., Inouye M.. ( 1996;). Cold shock induces a major ribosomal-associated protein that unwinds double-stranded RNA in Escherichia coli. . Proc Natl Acad Sci U S A 93:, 76–80. [CrossRef][PubMed]
    [Google Scholar]
  19. Khaitovich P., Mankin A. S., Green R., Lancaster L., Noller H. F.. ( 1999;). Characterization of functionally active subribosomal particles from Thermus aquaticus. . Proc Natl Acad Sci U S A 96:, 85–90. [CrossRef][PubMed]
    [Google Scholar]
  20. Kitahara K., Kajiura A., Sato N. S., Suzuki T.. ( 2007;). Functional genetic selection of Helix 66 in Escherichia coli 23S rRNA identified the eukaryotic-binding sequence for ribosomal protein L2. . Nucleic Acids Res 35:, 4018–4029. [CrossRef][PubMed]
    [Google Scholar]
  21. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A.. & other authors ( 1997;). The complete genome sequence of the gram-positive bacterium Bacillus subtilis. . Nature 390:, 249–256. [CrossRef][PubMed]
    [Google Scholar]
  22. Kurland C. G.. ( 1972;). Structure and function of the bacterial ribosome. . Annu Rev Biochem 41:, 377–408. [CrossRef][PubMed]
    [Google Scholar]
  23. Lehnik-Habrink M., Rempeters L., Kovács Á. T., Wrede C., Baierlein C., Krebber H., Kuipers O. P., Stülke J.. ( 2013;). DEAD-Box RNA helicases in Bacillus subtilis have multiple functions and act independently from each other. . J Bacteriol 195:, 534–544. [CrossRef][PubMed]
    [Google Scholar]
  24. Leighton T. J., Doi R. H.. ( 1971;). The stability of messenger ribonucleic acid during sporulation in Bacillus subtilis. . J Biol Chem 246:, 3189–3195.[PubMed]
    [Google Scholar]
  25. Li X., Lindahl L., Sha Y., Zengel J. M.. ( 1997;). Analysis of the Bacillus subtilis S10 ribosomal protein gene cluster identifies two promoters that may be responsible for transcription of the entire 15-kilobase S10-spc-alpha cluster. . J Bacteriol 179:, 7046–7054.[PubMed]
    [Google Scholar]
  26. Matsuo Y., Morimoto T., Kuwano M., Loh P. C., Oshima T., Ogasawara N.. ( 2006;). The GTP-binding protein YlqF participates in the late step of 50 S ribosomal subunit assembly in Bacillus subtilis. . J Biol Chem 281:, 8110–8117. [CrossRef][PubMed]
    [Google Scholar]
  27. Nakagawa A., Nakashima T., Taniguchi M., Hosaka H., Kimura M., Tanaka I.. ( 1999;). The three-dimensional structure of the RNA-binding domain of ribosomal protein L2; a protein at the peptidyl transferase center of the ribosome. . EMBO J 18:, 1459–1467. [CrossRef][PubMed]
    [Google Scholar]
  28. Nanamiya H., Akanuma G., Natori Y., Murayama R., Kosono S., Kudo T., Kobayashi K., Ogasawara N., Park S. M.. & other authors ( 2004;). Zinc is a key factor in controlling alternation of two types of L31 protein in the Bacillus subtilis ribosome. . Mol Microbiol 52:, 273–283. [CrossRef][PubMed]
    [Google Scholar]
  29. Nanamiya H., Kawamura F., Kosono S.. ( 2006;). Proteomic study of the Bacillus subtilis ribosome: finding of zinc-dependent replacement for ribosomal protein L31 paralogues. . J Gen Appl Microbiol 52:, 249–258. [CrossRef][PubMed]
    [Google Scholar]
  30. Natori Y., Nanamiya H., Akanuma G., Kosono S., Kudo T., Ochi K., Kawamura F.. ( 2007;). A fail-safe system for the ribosome under zinc-limiting conditions in Bacillus subtilis. . Mol Microbiol 63:, 294–307. [CrossRef][PubMed]
    [Google Scholar]
  31. Nissen P., Hansen J., Ban N., Moore P. B., Steitz T. A.. ( 2000;). The structural basis of ribosome activity in peptide bond synthesis. . Science 289:, 920–930. [CrossRef][PubMed]
    [Google Scholar]
  32. Nomura M.. ( 1970;). Bacterial ribosome. . Bacteriol Rev 34:, 228–277.[PubMed]
    [Google Scholar]
  33. Nomura M., Erdmann V. A.. ( 1970;). Reconstitution of 50S ribosomal subunits from dissociated molecular components. . Nature 228:, 744–748. [CrossRef][PubMed]
    [Google Scholar]
  34. Rippa V., Cirulli C., Di Palo B., Doti N., Amoresano A., Duilio A.. ( 2010;). The ribosomal protein L2 interacts with the RNA polymerase α subunit and acts as a transcription modulator in Escherichia coli. . J Bacteriol 192:, 1882–1889. [CrossRef][PubMed]
    [Google Scholar]
  35. Romero D. P., Arredondo J. A., Traut R. R.. ( 1990;). Identification of a region of Escherichia coli ribosomal protein L2 required for the assembly of L16 into the 50 S ribosomal subunit. . J Biol Chem 265:, 18185–18191.[PubMed]
    [Google Scholar]
  36. Rutberg L.. ( 1969;). Mapping of a temperate bacteriophage active on Bacillus subtilis. . J Virol 3:, 38–44.[PubMed]
    [Google Scholar]
  37. Sambrook J., Russell D.. ( 2001;). Molecular Cloning: A Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  38. Schaefer L., Uicker W. C., Wicker-Planquart C., Foucher A. E., Jault J. M., Britton R. A.. ( 2006;). Multiple GTPases participate in the assembly of the large ribosomal subunit in Bacillus subtilis. . J Bacteriol 188:, 8252–8258. [CrossRef][PubMed]
    [Google Scholar]
  39. Schulze H., Nierhaus K. H.. ( 1982;). Minimal set of ribosomal components for reconstitution of the peptidyltransferase activity. . EMBO J 1:, 609–613.[PubMed]
    [Google Scholar]
  40. Tagami K., Nanamiya H., Kazo Y., Maehashi M., Suzuki S., Namba E., Hoshiya M., Hanai R., Tozawa Y.. & other authors ( 2012;). Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp0 mutant of Bacillus subtilis triggers YvyD-dependent dimerization of ribosome. . Microbiologyopen 1:, 115–134. [CrossRef][PubMed]
    [Google Scholar]
  41. Takahashi I.. ( 1961;). Genetic transduction in Bacillus subtilis. . Biochem Biophys Res Commun 5:, 171–175. [CrossRef][PubMed]
    [Google Scholar]
  42. Takahashi I.. ( 1963;). Transducing phages for Bacillus subtilis. . J Gen Microbiol 31:, 211–217. [CrossRef][PubMed]
    [Google Scholar]
  43. Tanaka I., Nakagawa A., Nakashima T., Taniguchi M., Hosaka H., Kimura M.. ( 2000;). Structure and evolution of the 23S rRNA binding domain of protein L2. In The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions, pp. 85–92. Edited by Garrett R. A., Douthwaite S. R., Liljas A., Matheson A. T., Moore P. B., Noller H. F... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  44. Uhlein M., Weglöhner W., Urlaub H., Wittmann-Liebold B.. ( 1998;). Functional implications of ribosomal protein L2 in protein biosynthesis as shown by in vivo replacement studies. . Biochem J 331:, 423–430.[PubMed]
    [Google Scholar]
  45. Uicker W. C., Schaefer L., Britton R. A.. ( 2006;). The essential GTPase RbgA (YlqF) is required for 50S ribosome assembly in Bacillus subtilis. . Mol Microbiol 59:, 528–540. [CrossRef][PubMed]
    [Google Scholar]
  46. Wada A.. ( 1986;). Analysis of Escherichia coli ribosomal proteins by an improved two dimensional gel electrophoresis. I. detection of four new proteins. . J Biochem 100:, 1583–1594.
    [Google Scholar]
  47. Watanabe H., Mori H., Itoh T., Gojobori T.. ( 1997;). Genome plasticity as a paradigm of eubacteria evolution. . J Mol Evol 44: (Suppl 1), S57–S64. [CrossRef][PubMed]
    [Google Scholar]
  48. Wicker-Planquart C., Foucher A. E., Louwagie M., Britton R. A., Jault J. M.. ( 2008;). Interactions of an essential Bacillus subtilis GTPase, YsxC, with ribosomes. . J Bacteriol 190:, 681–690. [CrossRef][PubMed]
    [Google Scholar]
  49. Willumeit R., Forthmann S., Beckmann J., Diedrich G., Ratering R., Stuhrmann H. B., Nierhaus K. H.. ( 2001;). Localization of the protein L2 in the 50 S subunit and the 70 S E. coli ribosome. . J Mol Biol 305:, 167–177. [CrossRef][PubMed]
    [Google Scholar]
  50. Yusupov M. M., Yusupova G. Z., Baucom A., Lieberman K., Earnest T. N., Cate J. H., Noller H. F.. ( 2001;). Crystal structure of the ribosome at 5.5 Å resolution. . Science 292:, 883–896. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.076463-0
Loading
/content/journal/micro/10.1099/mic.0.076463-0
Loading

Data & Media loading...

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error