1887

Abstract

The ability of the necrotrophic fungus to detoxify reactive oxygen species (ROS) is crucial for pathogenesis to citrus. We report regulation of siderophore-mediated iron acquisition and ROS resistance by the NADPH oxidase (NOX), the redox activating yes-associated protein 1 (YAP1) regulator, and the high-osmolarity glycerol 1 (HOG1) mitogen-activated protein kinase (MAPK). The nonribosomal peptide synthetase (NPS6) is essential for the biosynthesis of siderophores, contributing to iron uptake under low-iron conditions. Fungal strains impaired for NOX, YAP1, HOG1 or NPS6 all display increased sensitivity to ROS. Exogenous addition of iron at least partially rescues ROS sensitivity seen for NPS6, YAP1, HOG1, and NOX mutants. Importantly, expression of the gene and biosynthesis of siderophores are regulated by NOX, YAP1 and HOG1, supporting a functional link among these regulatory pathways. Although iron fully rescues HO sensitivity seen in mutants impaired for the response regulator SKN7, neither expression of nor biosynthesis of siderophores is controlled by SKN7. Our results indicate that the acquisition of environmental iron has profound effects on ROS detoxification.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.076182-0
2014-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/970.html?itemId=/content/journal/micro/10.1099/mic.0.076182-0&mimeType=html&fmt=ahah

References

  1. Aebi H.. ( 1984;). Catalase in vitro. . Methods Enzymol 105:, 121–126. [CrossRef][PubMed]
    [Google Scholar]
  2. Akimitsu K., Peever T. L., Timmer L. W.. ( 2003;). Molecular, ecological and evolutionary approaches to understanding Alternaria diseases of citrus. . Mol Plant Pathol 4:, 435–446. [CrossRef][PubMed]
    [Google Scholar]
  3. Apel K., Hirt H.. ( 2004;). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. . Annu Rev Plant Biol 55:, 373–399. [CrossRef][PubMed]
    [Google Scholar]
  4. Bouquin N., Johnson A. L., Morgan B. A., Johnston L. H.. ( 1999;). Association of the cell cycle transcription factor Mbp1 with the Skn7 response regulator in budding yeast. . Mol Biol Cell 10:, 3389–3400. [CrossRef][PubMed]
    [Google Scholar]
  5. Chen L.-H., Lin C.-H., Chung K.-R.. ( 2012;). Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata. . Fungal Genet Biol 49:, 802–813. [CrossRef][PubMed]
    [Google Scholar]
  6. Chen L.-H., Lin C.-H., Chung K.-R.. ( 2013;). A nonribosomal peptide synthetase mediates siderophore production and virulence in the citrus fungal pathogen Alternaria alternata. . Mol Plant Pathol 14:, 497–505. [CrossRef][PubMed]
    [Google Scholar]
  7. Chung K.-R.. ( 2012;). Stress response and pathogenicity of the necrotrophic fungal pathogen Alternaria alternata. . Scientifica 2013:, 635431. [CrossRef][PubMed]
    [Google Scholar]
  8. Chung K.-R.. ( 2013;). Mitogen-activated protein kinase signalling pathways of the tangerine pathotype of Alternaria alternata. . MAP Kinase 2:, e4. [CrossRef]
    [Google Scholar]
  9. Enjalbert B., MacCallum D. M., Odds F. C., Brown A. J. P.. ( 2007;). Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. . Infect Immun 75:, 2143–2151. [CrossRef][PubMed]
    [Google Scholar]
  10. Gustin M. C., Albertyn J., Alexander M., Davenport K.. ( 1998;). MAP kinase pathways in the yeast Saccharomyces cerevisiae. . Microbiol Mol Biol Rev 62:, 1264–1300.[PubMed]
    [Google Scholar]
  11. Haas H., Eisendle M., Turgeon B. G.. ( 2008;). Siderophores in fungal physiology and virulence. . Annu Rev Phytopathol 46:, 149–187. [CrossRef][PubMed]
    [Google Scholar]
  12. Halliwell B., Gutteridge J. M. C.. ( 1992;). Biologically relevant metal ion-dependent hydroxyl radical generation. An update. . FEBS Lett 307:, 108–112. [CrossRef][PubMed]
    [Google Scholar]
  13. Lambeth J. D.. ( 2004;). NOX enzymes and the biology of reactive oxygen. . Nat Rev Immunol 4:, 181–189. [CrossRef][PubMed]
    [Google Scholar]
  14. Lee J., Godon C., Lagniel G., Spector D., Garin J., Labarre J., Toledano M. B.. ( 1999;). Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. . J Biol Chem 274:, 16040–16046. [CrossRef][PubMed]
    [Google Scholar]
  15. Lee B.-N., Kroken S., Chou D. Y. T., Robbertse B., Yoder O. C., Turgeon B. G.. ( 2005;). Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress. . Eukaryot Cell 4:, 545–555. [CrossRef][PubMed]
    [Google Scholar]
  16. Lessing F., Kniemeyer O., Wozniok I., Loeffler J., Kurzai O., Haertl A., Brakhage A. A.. ( 2007;). The Aspergillus fumigatus transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model. . Eukaryot Cell 6:, 2290–2302. [CrossRef][PubMed]
    [Google Scholar]
  17. Lev S., Hadar R., Amedeo P., Baker S. E., Yoder O. C., Horwitz B. A.. ( 2005;). Activation of an AP1-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals. . Eukaryot Cell 4:, 443–454. [CrossRef][PubMed]
    [Google Scholar]
  18. Li S., Ault A., Malone C. L., Raitt D., Dean S., Johnston L. H., Deschenes R. J., Fassler J. S.. ( 1998;). The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. . EMBO J 17:, 6952–6962. [CrossRef][PubMed]
    [Google Scholar]
  19. Li W., Yuan R., Burns J. K., Timmer L. W., Chung K. R.. ( 2003;). Genes for hormone biosynthesis and regulation are highly expressed in citrus flowers infected with the fungus Colletotrichum acutatum, causal agent of postbloom fruit drop. . J Amer Soc Hort Sci 128:, 578–583.
    [Google Scholar]
  20. Lin C.-H., Chung K.-R.. ( 2010;). Specialized and shared functions of the histidine kinase- and HOG1 MAP kinase-mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus. . Fungal Genet Biol 47:, 818–827. [CrossRef][PubMed]
    [Google Scholar]
  21. Lin C.-H., Yang S. L., Chung K.-R.. ( 2009;). The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus. . Mol Plant Microbe Interact 22:, 942–952. [CrossRef][PubMed]
    [Google Scholar]
  22. Lin C.-H., Yang S. L., Wang N.-Y., Chung K.-R.. ( 2010;). The FUS3 MAPK signaling pathway of the citrus pathogen Alternaria alternata functions independently or cooperatively with the fungal redox-responsive AP1 regulator for diverse developmental, physiological and pathogenic processes. . Fungal Genet Biol 47:, 381–391. [CrossRef][PubMed]
    [Google Scholar]
  23. Lin C.-H., Yang S. L., Chung K.-R.. ( 2011;). Cellular responses required for oxidative stress tolerance, colonization, and lesion formation by the necrotrophic fungus Alternaria alternata in citrus. . Curr Microbiol 62:, 807–815. [CrossRef][PubMed]
    [Google Scholar]
  24. Molina L., Kahmann R.. ( 2007;). An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. . Plant Cell 19:, 2293–2309. [CrossRef][PubMed]
    [Google Scholar]
  25. Morgan B. A., Banks G. R., Toone W. M., Raitt D., Kuge S., Johnston L. H.. ( 1997;). The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. . EMBO J 16:, 1035–1044. [CrossRef][PubMed]
    [Google Scholar]
  26. Oide S., Moeder W., Krasnoff S., Gibson D., Haas H., Yoshioka K., Turgeon B. G.. ( 2006;). NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes. . Plant Cell 18:, 2836–2853. [CrossRef][PubMed]
    [Google Scholar]
  27. Qi M., Elion E. A.. ( 2005;). MAP kinase pathways. . J Cell Sci 118:, 3569–3572. [CrossRef][PubMed]
    [Google Scholar]
  28. Raitt D. C., Johnson A. L., Erkine A. M., Makino K., Morgan B., Gross D. S., Johnston L. H.. ( 2000;). The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. . Mol Biol Cell 11:, 2335–2347. [CrossRef][PubMed]
    [Google Scholar]
  29. Takemoto D., Tanaka A., Scott B.. ( 2007;). NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation. . Fungal Genet Biol 44:, 1065–1076. [CrossRef][PubMed]
    [Google Scholar]
  30. Toone W. M., Jones N.. ( 1999;). AP-1 transcription factors in yeast. . Curr Opin Genet Dev 9:, 55–61. [CrossRef][PubMed]
    [Google Scholar]
  31. Weydert C. J., Cullen J. J.. ( 2010;). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. . Nat Protoc 5:, 51–66. [CrossRef][PubMed]
    [Google Scholar]
  32. Williams K. E., Cyert M. S.. ( 2001;). The eukaryotic response regulator Skn7p regulates calcineurin signaling through stabilization of Crz1p. . EMBO J 20:, 3473–3483. [CrossRef][PubMed]
    [Google Scholar]
  33. Wurgler-Murphy S. M., Saito H.. ( 1997;). Two-component signal transducers and MAPK cascades. . Trends Biochem Sci 22:, 172–176. [CrossRef][PubMed]
    [Google Scholar]
  34. Yang S. L., Chung K.-R.. ( 2012;). The NADPH oxidase-mediated production of hydrogen peroxide (H2O2) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. . Mol Plant Pathol 13:, 900–914. [CrossRef][PubMed]
    [Google Scholar]
  35. Yang S. L., Chung K.-R.. ( 2013;). Similar and distinct roles of NADPH oxidase components in the tangerine pathotype of Alternaria alternata. . Mol Plant Pathol 14:, 543–556. [CrossRef][PubMed]
    [Google Scholar]
  36. Yang S. L., Lin C.-H., Chung K.-R.. ( 2009;). Coordinate control of oxidative stress tolerance, vegetative growth and fungal pathogenicity via the AP1 pathway in the rough lemon pathotype of Alternaria alternata. . Physiol Mol Plant Pathol 74:, 100–110. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.076182-0
Loading
/content/journal/micro/10.1099/mic.0.076182-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error