1887

Abstract

The antisense RNA ArrS is complementary to a sequence in the 5′ untranslated region of the T3 mRNA, the largest transcript of , which encodes a transcriptional activator of the glutamate-dependent acid resistance system in . Expression of is strongly induced during the stationary growth phase, particularly under acidic conditions, and transcription is dependent on σ and GadE. The aim of the present study was to clarify the role of ArrS in controlling expression by overexpressing in . The results showed a marked increase in the survival of -overexpressing cells at 2 h after a shift to pH 2.5. This was accompanied by increased expression of , and . The level of T3 mRNA decreased markedly in response to overexpression, and was accompanied by a marked increase in mRNA T2. T2 mRNA had a monophosphorylated 5′ terminus, which is usually found in cleaved mRNAs, and no T2 mRNA was observed in an RNase III-deficient cell strain. In addition, T2 mRNA was not generated by a P3-deleted translational fusion. These results suggest strongly that T2 mRNA is generated via the processing of T3 mRNA. Moreover, the T2 mRNA, which was abundant in -overexpressing cells, was more stable than T3 mRNA in non-overexpressing cells. These results suggest that overexpression of ArrS positively regulates expression in a post-transcriptional manner.

Funding
This study was supported by the:
  • Research Promotion Award of the Faculty of Health Sciences, Kyorin University, Japan
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075994-0
2014-05-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/954.html?itemId=/content/journal/micro/10.1099/mic.0.075994-0&mimeType=html&fmt=ahah

References

  1. Aiba H., Adhya S., de Crombrugghe B. ( 1981). Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:11905–11910[PubMed]
    [Google Scholar]
  2. Aiso T., Murata M., Gamou S. ( 2011). Transcription of an antisense RNA of a gadE mRNA is regulated by GadE, the central activator of the acid resistance system in Escherichia coli. Genes Cells 16:670–680 [View Article][PubMed]
    [Google Scholar]
  3. Arraiano C. M., Yancey S. D., Kushner S. R. ( 1988). Stabilization of discrete mRNA breakdown products in ams pnp rnb multiple mutants of Escherichia coli K-12. J Bacteriol 170:4625–4633[PubMed]
    [Google Scholar]
  4. Babitzke P., Granger L., Olszewski J., Kushner S. R. ( 1993). Analysis of mRNA decay and rRNA processing in Escherichia coli multiple mutants carrying a deletion in RNase III. J Bacteriol 175:229–239[PubMed]
    [Google Scholar]
  5. Bordi C., Théraulaz L., Méjean V., Jourlin-Castelli C. ( 2003). Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli. Mol Microbiol 48:211–223 [View Article][PubMed]
    [Google Scholar]
  6. Callen B. P., Shearwin K. E., Egan J. B. ( 2004). Transcriptional interference between convergent promoters caused by elongation over the promoter. Mol Cell 14:647–656 [View Article][PubMed]
    [Google Scholar]
  7. Castanie-Cornet M. P., Penfound T. A., Smith D., Elliott J. F., Foster J. W. ( 1999). Control of acid resistance in Escherichia coli. J Bacteriol 181:3525–3535[PubMed]
    [Google Scholar]
  8. Chen S., Lesnik E. A., Hall T. A., Sampath R., Griffey R. H., Ecker D. J., Blyn L. B. ( 2002). A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. Biosystems 65:157–177 [View Article][PubMed]
    [Google Scholar]
  9. Couttet P., Fromont-Racine M., Steel D., Pictet R., Grange T. ( 1997). Messenger RNA deadenylylation precedes decapping in mammalian cells. Proc Natl Acad Sci U S A 94:5628–5633 [View Article][PubMed]
    [Google Scholar]
  10. Dühring U., Axmann I. M., Hess W. R., Wilde A. ( 2006). An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci U S A 103:7054–7058 [View Article][PubMed]
    [Google Scholar]
  11. Faghihi M. A., Wahlestedt C. ( 2009). Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10:637–643 [View Article][PubMed]
    [Google Scholar]
  12. Foster J. W. ( 2004). Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907 [View Article][PubMed]
    [Google Scholar]
  13. Georg J., Hess W. R. ( 2011). cis-Antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev 75:286–300 [View Article][PubMed]
    [Google Scholar]
  14. Gong S., Ma Z., Foster J. W. ( 2004). The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli. Mol Microbiol 54:948–961 [View Article][PubMed]
    [Google Scholar]
  15. Gorden J., Small P. L. ( 1993). Acid resistance in enteric bacteria. Infect Immun 61:364–367[PubMed]
    [Google Scholar]
  16. Hommais F., Krin E., Coppée J. Y., Lacroix C., Yeramian E., Danchin A., Bertin P. ( 2004). GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology 150:61–72 [View Article][PubMed]
    [Google Scholar]
  17. Kailasan Vanaja S., Bergholz T. M., Whittam T. S. ( 2009). Characterization of the Escherichia coli O157 : H7 Sakai GadE regulon. J Bacteriol 191:1868–1877 [View Article][PubMed]
    [Google Scholar]
  18. Kawano M., Aravind L., Storz G. ( 2007). An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. Mol Microbiol 64:738–754 [View Article][PubMed]
    [Google Scholar]
  19. Ma Z., Gong S., Richard H., Tucker D. L., Conway T., Foster J. W. ( 2003). GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol 49:1309–1320 [View Article][PubMed]
    [Google Scholar]
  20. Ma Z., Masuda N., Foster J. W. ( 2004). Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamate-dependent acid resistance in Escherichia coli. J Bacteriol 186:7378–7389 [View Article][PubMed]
    [Google Scholar]
  21. Majdalani N., Cunning C., Sledjeski D., Elliott T., Gottesman S. ( 1998). DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci U S A 95:12462–12467 [View Article][PubMed]
    [Google Scholar]
  22. Majdalani N., Chen S., Murrow J., St John K., Gottesman S. ( 2001). Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol Microbiol 39:1382–1394 [View Article][PubMed]
    [Google Scholar]
  23. Masuda N., Church G. M. ( 2003). Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol 48:699–712 [View Article][PubMed]
    [Google Scholar]
  24. Opdyke J. A., Kang J. G., Storz G. ( 2004). GadY, a small-RNA regulator of acid response genes in Escherichia coli. J Bacteriol 186:6698–6705 [View Article][PubMed]
    [Google Scholar]
  25. Opdyke J. A., Fozo E. M., Hemm M. R., Storz G. ( 2011). RNase III participates in GadY-dependent cleavage of the gadX-gadW mRNA. J Mol Biol 406:29–43 [View Article][PubMed]
    [Google Scholar]
  26. Sayed A. K., Foster J. W. ( 2009). A 750 bp sensory integration region directs global control of the Escherichia coli GadE acid resistance regulator. Mol Microbiol 71:1435–1450 [View Article][PubMed]
    [Google Scholar]
  27. Sayed A. K., Odom C., Foster J. W. ( 2007). The Escherichia coli AraC-family regulators GadX and GadW activate gadE, the central activator of glutamate-dependent acid resistance. Microbiology 153:2584–2592 [View Article][PubMed]
    [Google Scholar]
  28. Sesto N., Wurtzel O., Archambaud C., Sorek R., Cossart P. ( 2013). The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. Nat Rev Microbiol 11:75–82 [View Article][PubMed]
    [Google Scholar]
  29. Sharma C. M., Hoffmann S., Darfeuille F., Reignier J., Findeiß S., Sittka A., Chabas S., Reiche K., Hackermüller J. & other authors ( 2010). The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255 [View Article][PubMed]
    [Google Scholar]
  30. Stazic D., Lindell D., Steglich C. ( 2011). Antisense RNA protects mRNA from RNase E degradation by RNA-RNA duplex formation during phage infection. Nucleic Acids Res 39:4890–4899 [View Article][PubMed]
    [Google Scholar]
  31. Stork M., Di Lorenzo M., Welch T. J., Crosa J. H. ( 2007). Transcription termination within the iron transport-biosynthesis operon of Vibrio anguillarum requires an antisense RNA. J Bacteriol 189:3479–3488 [View Article][PubMed]
    [Google Scholar]
  32. Thomason M. K., Storz G. ( 2010). Bacterial antisense RNAs: how many are there, and what are they doing. Annu Rev Genet 44:167–188 [View Article][PubMed]
    [Google Scholar]
  33. Tramonti A., De Canio M., De Biase D. ( 2008). GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol Microbiol 70:965–982[PubMed]
    [Google Scholar]
  34. Tree J. J., Roe A. J., Flockhart A., McAteer S. P., Xu X., Shaw D., Mahajan A., Beatson S. A., Best A. & other authors ( 2011). Transcriptional regulators of the GAD acid stress island are carried by effector protein-encoding prophages and indirectly control type III secretion in enterohemorrhagic Escherichia coli O157 : H7. Mol Microbiol 80:1349–1365 [View Article][PubMed]
    [Google Scholar]
  35. Tucker D. L., Tucker N., Conway T. ( 2002). Gene expression profiling of the pH response in Escherichia coli. J Bacteriol 184:6551–6558 [View Article][PubMed]
    [Google Scholar]
  36. Tucker D. L., Tucker N., Ma Z., Foster J. W., Miranda R. L., Cohen P. S., Conway T. ( 2003). Genes of the GadX-GadW regulon in Escherichia coli. J Bacteriol 185:3190–3201 [View Article][PubMed]
    [Google Scholar]
  37. Yonesaki T. ( 2002). Scarce adenylation in bacteriophage T4 mRNAs. Genes Genet Syst 77:219–225 [View Article][PubMed]
    [Google Scholar]
  38. Zwir I., Shin D., Kato A., Nishino K., Latifi T., Solomon F., Hare J. M., Huang H., Groisman E. A. ( 2005). Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci U S A 102:2862–2867 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.075994-0
Loading
/content/journal/micro/10.1099/mic.0.075994-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error