1887

Abstract

The antisense RNA ArrS is complementary to a sequence in the 5′ untranslated region of the T3 mRNA, the largest transcript of , which encodes a transcriptional activator of the glutamate-dependent acid resistance system in . Expression of is strongly induced during the stationary growth phase, particularly under acidic conditions, and transcription is dependent on σ and GadE. The aim of the present study was to clarify the role of ArrS in controlling expression by overexpressing in . The results showed a marked increase in the survival of -overexpressing cells at 2 h after a shift to pH 2.5. This was accompanied by increased expression of , and . The level of T3 mRNA decreased markedly in response to overexpression, and was accompanied by a marked increase in mRNA T2. T2 mRNA had a monophosphorylated 5′ terminus, which is usually found in cleaved mRNAs, and no T2 mRNA was observed in an RNase III-deficient cell strain. In addition, T2 mRNA was not generated by a P3-deleted translational fusion. These results suggest strongly that T2 mRNA is generated via the processing of T3 mRNA. Moreover, the T2 mRNA, which was abundant in -overexpressing cells, was more stable than T3 mRNA in non-overexpressing cells. These results suggest that overexpression of ArrS positively regulates expression in a post-transcriptional manner.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075994-0
2014-05-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/954.html?itemId=/content/journal/micro/10.1099/mic.0.075994-0&mimeType=html&fmt=ahah

References

  1. Aiba H., Adhya S., de Crombrugghe B.. ( 1981;). Evidence for two functional gal promoters in intact Escherichia coli cells. . J Biol Chem 256:, 11905–11910.[PubMed]
    [Google Scholar]
  2. Aiso T., Murata M., Gamou S.. ( 2011;). Transcription of an antisense RNA of a gadE mRNA is regulated by GadE, the central activator of the acid resistance system in Escherichia coli. . Genes Cells 16:, 670–680. [CrossRef][PubMed]
    [Google Scholar]
  3. Arraiano C. M., Yancey S. D., Kushner S. R.. ( 1988;). Stabilization of discrete mRNA breakdown products in ams pnp rnb multiple mutants of Escherichia coli K-12. . J Bacteriol 170:, 4625–4633.[PubMed]
    [Google Scholar]
  4. Babitzke P., Granger L., Olszewski J., Kushner S. R.. ( 1993;). Analysis of mRNA decay and rRNA processing in Escherichia coli multiple mutants carrying a deletion in RNase III. . J Bacteriol 175:, 229–239.[PubMed]
    [Google Scholar]
  5. Bordi C., Théraulaz L., Méjean V., Jourlin-Castelli C.. ( 2003;). Anticipating an alkaline stress through the Tor phosphorelay system in Escherichia coli. . Mol Microbiol 48:, 211–223. [CrossRef][PubMed]
    [Google Scholar]
  6. Callen B. P., Shearwin K. E., Egan J. B.. ( 2004;). Transcriptional interference between convergent promoters caused by elongation over the promoter. . Mol Cell 14:, 647–656. [CrossRef][PubMed]
    [Google Scholar]
  7. Castanie-Cornet M. P., Penfound T. A., Smith D., Elliott J. F., Foster J. W.. ( 1999;). Control of acid resistance in Escherichia coli. . J Bacteriol 181:, 3525–3535.[PubMed]
    [Google Scholar]
  8. Chen S., Lesnik E. A., Hall T. A., Sampath R., Griffey R. H., Ecker D. J., Blyn L. B.. ( 2002;). A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. . Biosystems 65:, 157–177. [CrossRef][PubMed]
    [Google Scholar]
  9. Couttet P., Fromont-Racine M., Steel D., Pictet R., Grange T.. ( 1997;). Messenger RNA deadenylylation precedes decapping in mammalian cells. . Proc Natl Acad Sci U S A 94:, 5628–5633. [CrossRef][PubMed]
    [Google Scholar]
  10. Dühring U., Axmann I. M., Hess W. R., Wilde A.. ( 2006;). An internal antisense RNA regulates expression of the photosynthesis gene isiA. . Proc Natl Acad Sci U S A 103:, 7054–7058. [CrossRef][PubMed]
    [Google Scholar]
  11. Faghihi M. A., Wahlestedt C.. ( 2009;). Regulatory roles of natural antisense transcripts. . Nat Rev Mol Cell Biol 10:, 637–643. [CrossRef][PubMed]
    [Google Scholar]
  12. Foster J. W.. ( 2004;). Escherichia coli acid resistance: tales of an amateur acidophile. . Nat Rev Microbiol 2:, 898–907. [CrossRef][PubMed]
    [Google Scholar]
  13. Georg J., Hess W. R.. ( 2011;). cis-Antisense RNA, another level of gene regulation in bacteria. . Microbiol Mol Biol Rev 75:, 286–300. [CrossRef][PubMed]
    [Google Scholar]
  14. Gong S., Ma Z., Foster J. W.. ( 2004;). The Era-like GTPase TrmE conditionally activates gadE and glutamate-dependent acid resistance in Escherichia coli. . Mol Microbiol 54:, 948–961. [CrossRef][PubMed]
    [Google Scholar]
  15. Gorden J., Small P. L.. ( 1993;). Acid resistance in enteric bacteria. . Infect Immun 61:, 364–367.[PubMed]
    [Google Scholar]
  16. Hommais F., Krin E., Coppée J. Y., Lacroix C., Yeramian E., Danchin A., Bertin P.. ( 2004;). GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. . Microbiology 150:, 61–72. [CrossRef][PubMed]
    [Google Scholar]
  17. Kailasan Vanaja S., Bergholz T. M., Whittam T. S.. ( 2009;). Characterization of the Escherichia coli O157 : H7 Sakai GadE regulon. . J Bacteriol 191:, 1868–1877. [CrossRef][PubMed]
    [Google Scholar]
  18. Kawano M., Aravind L., Storz G.. ( 2007;). An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin. . Mol Microbiol 64:, 738–754. [CrossRef][PubMed]
    [Google Scholar]
  19. Ma Z., Gong S., Richard H., Tucker D. L., Conway T., Foster J. W.. ( 2003;). GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. . Mol Microbiol 49:, 1309–1320. [CrossRef][PubMed]
    [Google Scholar]
  20. Ma Z., Masuda N., Foster J. W.. ( 2004;). Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamate-dependent acid resistance in Escherichia coli. . J Bacteriol 186:, 7378–7389. [CrossRef][PubMed]
    [Google Scholar]
  21. Majdalani N., Cunning C., Sledjeski D., Elliott T., Gottesman S.. ( 1998;). DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. . Proc Natl Acad Sci U S A 95:, 12462–12467. [CrossRef][PubMed]
    [Google Scholar]
  22. Majdalani N., Chen S., Murrow J., St John K., Gottesman S.. ( 2001;). Regulation of RpoS by a novel small RNA: the characterization of RprA. . Mol Microbiol 39:, 1382–1394. [CrossRef][PubMed]
    [Google Scholar]
  23. Masuda N., Church G. M.. ( 2003;). Regulatory network of acid resistance genes in Escherichia coli. . Mol Microbiol 48:, 699–712. [CrossRef][PubMed]
    [Google Scholar]
  24. Opdyke J. A., Kang J. G., Storz G.. ( 2004;). GadY, a small-RNA regulator of acid response genes in Escherichia coli. . J Bacteriol 186:, 6698–6705. [CrossRef][PubMed]
    [Google Scholar]
  25. Opdyke J. A., Fozo E. M., Hemm M. R., Storz G.. ( 2011;). RNase III participates in GadY-dependent cleavage of the gadX-gadW mRNA. . J Mol Biol 406:, 29–43. [CrossRef][PubMed]
    [Google Scholar]
  26. Sayed A. K., Foster J. W.. ( 2009;). A 750 bp sensory integration region directs global control of the Escherichia coli GadE acid resistance regulator. . Mol Microbiol 71:, 1435–1450. [CrossRef][PubMed]
    [Google Scholar]
  27. Sayed A. K., Odom C., Foster J. W.. ( 2007;). The Escherichia coli AraC-family regulators GadX and GadW activate gadE, the central activator of glutamate-dependent acid resistance. . Microbiology 153:, 2584–2592. [CrossRef][PubMed]
    [Google Scholar]
  28. Sesto N., Wurtzel O., Archambaud C., Sorek R., Cossart P.. ( 2013;). The excludon: a new concept in bacterial antisense RNA-mediated gene regulation. . Nat Rev Microbiol 11:, 75–82. [CrossRef][PubMed]
    [Google Scholar]
  29. Sharma C. M., Hoffmann S., Darfeuille F., Reignier J., Findeiß S., Sittka A., Chabas S., Reiche K., Hackermüller J.. & other authors ( 2010;). The primary transcriptome of the major human pathogen Helicobacter pylori. . Nature 464:, 250–255. [CrossRef][PubMed]
    [Google Scholar]
  30. Stazic D., Lindell D., Steglich C.. ( 2011;). Antisense RNA protects mRNA from RNase E degradation by RNA-RNA duplex formation during phage infection. . Nucleic Acids Res 39:, 4890–4899. [CrossRef][PubMed]
    [Google Scholar]
  31. Stork M., Di Lorenzo M., Welch T. J., Crosa J. H.. ( 2007;). Transcription termination within the iron transport-biosynthesis operon of Vibrio anguillarum requires an antisense RNA. . J Bacteriol 189:, 3479–3488. [CrossRef][PubMed]
    [Google Scholar]
  32. Thomason M. K., Storz G.. ( 2010;). Bacterial antisense RNAs: how many are there, and what are they doing. ? Annu Rev Genet 44:, 167–188. [CrossRef][PubMed]
    [Google Scholar]
  33. Tramonti A., De Canio M., De Biase D.. ( 2008;). GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. . Mol Microbiol 70:, 965–982.[PubMed]
    [Google Scholar]
  34. Tree J. J., Roe A. J., Flockhart A., McAteer S. P., Xu X., Shaw D., Mahajan A., Beatson S. A., Best A.. & other authors ( 2011;). Transcriptional regulators of the GAD acid stress island are carried by effector protein-encoding prophages and indirectly control type III secretion in enterohemorrhagic Escherichia coli O157 : H7. . Mol Microbiol 80:, 1349–1365. [CrossRef][PubMed]
    [Google Scholar]
  35. Tucker D. L., Tucker N., Conway T.. ( 2002;). Gene expression profiling of the pH response in Escherichia coli. . J Bacteriol 184:, 6551–6558. [CrossRef][PubMed]
    [Google Scholar]
  36. Tucker D. L., Tucker N., Ma Z., Foster J. W., Miranda R. L., Cohen P. S., Conway T.. ( 2003;). Genes of the GadX-GadW regulon in Escherichia coli. . J Bacteriol 185:, 3190–3201. [CrossRef][PubMed]
    [Google Scholar]
  37. Yonesaki T.. ( 2002;). Scarce adenylation in bacteriophage T4 mRNAs. . Genes Genet Syst 77:, 219–225. [CrossRef][PubMed]
    [Google Scholar]
  38. Zwir I., Shin D., Kato A., Nishino K., Latifi T., Solomon F., Hare J. M., Huang H., Groisman E. A.. ( 2005;). Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. . Proc Natl Acad Sci U S A 102:, 2862–2867. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075994-0
Loading
/content/journal/micro/10.1099/mic.0.075994-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error