1887

Abstract

The ability of bacteria to bind different compounds and to adhere to biotic and abiotic surfaces provides them with a range of advantages, such as colonization of various tissues, internalization, avoidance of an immune response, and survival and persistence in the environment. A variety of bacterial surface structures are involved in this process and these promote bacterial adhesion in a more or less specific manner. In this review, we will focus on those surface adhesins and exopolymers in selected foodborne pathogens that are involved mainly in primary adhesion. Their role in biofilm development will also be considered when appropriate. Both the clinical impact and the implications for food safety of such adhesion will be discussed.

Funding
This study was supported by the:
  • Ministry of Education, Youth and Sports of the Czech Republic (Award LO1218 and COST LD 14015)
  • Embassy of France in Denmark ‘Institut Français du Danemark’ (IFD) (Award 14/2012/CSU.8.2.1)
  • Ministère des Affaires Etrangères et Européennes (Award 28297WG)
  • Norwegian Research Council (Award 192402)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075887-0
2014-12-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/12/2561.html?itemId=/content/journal/micro/10.1099/mic.0.075887-0&mimeType=html&fmt=ahah

References

  1. Allen-Vercoe E., Woodward M. J. ( 1999). The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteritidis to chick gut explant. J Med Microbiol 48:771–780 [View Article][PubMed]
    [Google Scholar]
  2. Anriany Y., Sahu S. N., Wessels K. R., McCann L. M., Joseph S. W. ( 2006). Alteration of the rugose phenotype in waaG and ddhC mutants of Salmonella enterica serovar Typhimurium DT104 is associated with inverse production of curli and cellulose. Appl Environ Microbiol 72:5002–5012 [View Article][PubMed]
    [Google Scholar]
  3. Asao T., Kumeda Y., Kawai T., Shibata T., Oda H., Haruki K., Nakazawa H., Kozaki S. ( 2003). An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol Infect 130:33–40 [View Article][PubMed]
    [Google Scholar]
  4. Austin J. W., Sanders G., Kay W. W., Collinson S. K. ( 1998). Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162:295–301 [View Article][PubMed]
    [Google Scholar]
  5. Barak J. D., Gorski L., Naraghi-Arani P., Charkowski A. O. ( 2005). Salmonella enterica virulence genes are required for bacterial attachment to plant tissue. Appl Environ Microbiol 71:5685–5691 [View Article][PubMed]
    [Google Scholar]
  6. Barak J. D., Jahn C. E., Gibson D. L., Charkowski A. O. ( 2007). The role of cellulose and O-antigen capsule in the colonization of plants by Salmonella enterica . Mol Plant Microbe Interact 20:1083–1091 [View Article][PubMed]
    [Google Scholar]
  7. Barbu E. M., Ganesh V. K., Gurusiddappa S., Mackenzie R. C., Foster T. J., Sudhof T. C., Höök M. ( 2010). β-Neurexin is a ligand for the Staphylococcus aureus MSCRAMM SdrC. PLoS Pathog 6:e1000726 [View Article][PubMed]
    [Google Scholar]
  8. Bardiau M., Szalo M., Mainil J. G. ( 2010). Initial adherence of EPEC, EHEC and VTEC to host cells. Vet Res 41:57 [View Article][PubMed]
    [Google Scholar]
  9. Bäumler A. J., Tsolis R. M., Bowe F. A., Kusters J. G., Hoffmann S., Heffron F. ( 1996a). The pef fimbrial operon of Salmonella typhimurium mediates adhesion to murine small intestine and is necessary for fluid accumulation in the infant mouse. Infect Immun 64:61–68[PubMed]
    [Google Scholar]
  10. Bäumler A. J., Tsolis R. M., Heffron F. ( 1996b). The lpf fimbrial operon mediates adhesion of Salmonella typhimurium to murine Peyer’s patches. Proc Natl Acad Sci U S A 93:279–283 [View Article][PubMed]
    [Google Scholar]
  11. Bäumler A. J., Tsolis R. M., Heffron F. ( 1997). Fimbrial adhesins of Salmonella typhimurium. Role in bacterial interactions with epithelial cells. Adv Exp Med Biol 412:149–158 [View Article][PubMed]
    [Google Scholar]
  12. Bavaro M. F. ( 2012). E. coli O157:H7 and other toxigenic strains: the curse of global food distribution. Curr Gastroenterol Rep 14:317–323 [View Article][PubMed]
    [Google Scholar]
  13. Benz I., Schmidt M. A. ( 2001). Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol Microbiol 40:1403–1413 [View Article][PubMed]
    [Google Scholar]
  14. Berger C. N., Sodha S. V., Shaw R. K., Griffin P. M., Pink D., Hand P., Frankel G. ( 2010). Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol 12:2385–2397 [View Article][PubMed]
    [Google Scholar]
  15. Bergmann S., Rohde M., Chhatwal G. S., Hammerschmidt S. ( 2001). α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40:1273–1287 [View Article][PubMed]
    [Google Scholar]
  16. Berthiaume F., Leblond M. F., Harel J., Mourez M. ( 2010). Growth-phase-dependent expression of the operon coding for the glycosylated autotransporter adhesin AIDA-I of pathogenic Escherichia coli . FEMS Microbiol Lett 311:176–184 [View Article][PubMed]
    [Google Scholar]
  17. Bierne H., Sabet C., Personnic N., Cossart P. ( 2007). Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes . Microbes Infect 9:1156–1166 [View Article][PubMed]
    [Google Scholar]
  18. Bilge S. S., Vary J. C. Jr, Dowell S. F., Tarr P. I. ( 1996). Role of the Escherichia coli O157:H7 O side chain in adherence and analysis of an rfb locus. Infect Immun 64:4795–4801[PubMed]
    [Google Scholar]
  19. Biscola F. T., Abe C. M., Guth B. E. C. ( 2011). Determination of adhesin gene sequences in, and biofilm formation by, O157 and non-O157 Shiga toxin-producing Escherichia coli strains isolated from different sources. Appl Environ Microbiol 77:2201–2208 [View Article][PubMed]
    [Google Scholar]
  20. Biswas R., Voggu L., Simon U. K., Hentschel P., Thumm G., Götz F. ( 2006). Activity of the major staphylococcal autolysin Atl. FEMS Microbiol Lett 259:260–268 [View Article][PubMed]
    [Google Scholar]
  21. Blanco L. P., Evans M. L., Smith D. R., Badtke M. P., Chapman M. R. ( 2012). Diversity, biogenesis and function of microbial amyloids. Trends Microbiol 20:66–73 [View Article][PubMed]
    [Google Scholar]
  22. Boerlin P., McEwen S. A., Boerlin-Petzold F., Wilson J. B., Johnson R. P., Gyles C. L. ( 1999). Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol 37:497–503[PubMed]
    [Google Scholar]
  23. Bordeau V., Felden B. ( 2014). Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone. Nucleic Acids Res 42:4682–4696 [View Article][PubMed]
    [Google Scholar]
  24. Borucki M. K., Peppin J. D., White D., Loge F., Call D. R. ( 2003). Variation in biofilm formation among strains of Listeria monocytogenes . Appl Environ Microbiol 69:7336–7342 [View Article][PubMed]
    [Google Scholar]
  25. Bose J. L., Lehman M. K., Fey P. D., Bayles K. W. ( 2012). Contribution of the Staphylococcus aureus Atl AM and GL murein hydrolase activities in cell division, autolysis, and biofilm formation. PLoS ONE 7:e42244 [View Article][PubMed]
    [Google Scholar]
  26. Boyer R. R., Sumner S. S., Williams R. C., Kniel K. E., McKinney J. M. ( 2011). Role of O-antigen on the Escherichia coli O157:H7 cells hydrophobicity, charge and ability to attach to lettuce. Int J Food Microbiol 147:228–232 [View Article][PubMed]
    [Google Scholar]
  27. Brooks J. T., Sowers E. G., Wells J. G., Greene K. D., Griffin P. M., Hoekstra R. M., Strockbine N. A. ( 2005). Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983–2002. J Infect Dis 192:1422–1429 [View Article][PubMed]
    [Google Scholar]
  28. Brunder W., Schmidt H., Karch H. ( 1997). EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol Microbiol 24:767–778 [View Article][PubMed]
    [Google Scholar]
  29. Brunder W., Khan A. S., Hacker J., Karch H. ( 2001). Novel type of fimbriae encoded by the large plasmid of sorbitol-fermenting enterohemorrhagic Escherichia coli O157:H . Infect Immun 69:4447–4457 [View Article][PubMed]
    [Google Scholar]
  30. Burgess C., Desvaux M., Olmez H. ( 2014). 1st Conference of BacFoodNet: mitigating bacterial colonisation in the food chain: bacterial adhesion, biocide resistance and microbial safety of fresh produce. Res Microbiol 165:305–310 [View Article][PubMed]
    [Google Scholar]
  31. Buvens G., Piérard D. ( 2012). Low prevalence of STEC autotransporter contributing to biofilm formation (Sab) in verocytotoxin-producing Escherichia coli isolates of humans and raw meats. Eur J Clin Microbiol Infect Dis 31:1463–1465 [View Article][PubMed]
    [Google Scholar]
  32. Caly D., Takilt D., Lebret V., Tresse O. ( 2009). Sodium chloride affects Listeria monocytogenes adhesion to polystyrene and stainless steel by regulating flagella expression. Lett Appl Microbiol 49:751–756 [View Article][PubMed]
    [Google Scholar]
  33. Carneiro C. R. W., Postol E., Nomizo R., Reis L. F. L., Brentani R. R. ( 2004). Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus . Microbes Infect 6:604–608 [View Article][PubMed]
    [Google Scholar]
  34. Carpentier B., Cerf O. ( 2011). Review–Persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol 145:1–8 [View Article][PubMed]
    [Google Scholar]
  35. Castelijn G. A. A., van der Veen S., Zwietering M. H., Moezelaar R., Abee T. ( 2012). Diversity in biofilm formation and production of curli fimbriae and cellulose of Salmonella Typhimurium strains of different origin in high and low nutrient medium. Biofouling 28:51–63 [View Article][PubMed]
    [Google Scholar]
  36. Chagnot C., Listrat A., Astruc T., Desvaux M. ( 2012). Bacterial adhesion to animal tissues: protein determinants for recognition of extracellular matrix components. Cell Microbiol 14:1687–1696 [View Article][PubMed]
    [Google Scholar]
  37. Chagnot C., Zorgani M. A., Astruc T., Desvaux M. ( 2013). Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective. Front Microbiol 4:303 [View Article][PubMed]
    [Google Scholar]
  38. Chang Y. H., Gu W. M., Fischer N., McLandsborough L. ( 2012). Identification of genes involved in Listeria monocytogenes biofilm formation by mariner-based transposon mutagenesis. Appl Microbiol Biotechnol 93:2051–2062 [View Article][PubMed]
    [Google Scholar]
  39. Chang Y., Gu W., Zhang F., McLandsborough L. ( 2013). Disruption of lmo1386, a putative DNA translocase gene, affects biofilm formation of Listeria monocytogenes on abiotic surfaces. Int J Food Microbiol 161:158–163 [View Article][PubMed]
    [Google Scholar]
  40. Chen C., Krishnan V., Macon K., Manne K., Narayana S. V. L., Schneewind O. ( 2013). Secreted proteases control autolysin-mediated biofilm growth of Staphylococcus aureus . J Biol Chem 288:29440–29452 [View Article][PubMed]
    [Google Scholar]
  41. Chen I., Dubnau D. ( 2004). DNA uptake during bacterial transformation. Nat Rev Microbiol 2:241–249 [View Article][PubMed]
    [Google Scholar]
  42. Chen I., Provvedi R., Dubnau D. ( 2006). A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis . J Biol Chem 281:21720–21727 [View Article][PubMed]
    [Google Scholar]
  43. Chitale S., Ehrt S., Kawamura I., Fujimura T., Shimono N., Anand N., Lu S. W., Cohen-Gould L., Riley L. W. ( 2001). Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cell Microbiol 3:247–254 [View Article][PubMed]
    [Google Scholar]
  44. Chu D., Barnes D. J. ( 2010). Modeling fimbriae mediated parasite–host interactions. J Theor Biol 264:1169–1176 [View Article][PubMed]
    [Google Scholar]
  45. Clarke S. R., Foster S. J. ( 2006). Surface adhesins of Staphylococcus aureus . Adv Microb Physiol 51:187–224 [View Article][PubMed]
    [Google Scholar]
  46. Clarke S. R., Harris L. G., Richards R. G., Foster S. J. ( 2002). Analysis of Ebh, a 1.1-megadalton cell wall-associated fibronectin-binding protein of Staphylococcus aureus . Infect Immun 70:6680–6687 [View Article][PubMed]
    [Google Scholar]
  47. Clarke S. R., Wiltshire M. D., Foster S. J. ( 2004). IsdA of Staphylococcus aureus is a broad spectrum, iron-regulated adhesin. Mol Microbiol 51:1509–1519 [View Article][PubMed]
    [Google Scholar]
  48. Clarke S. R., Andre G., Walsh E. J., Dufrêne Y. F., Foster T. J., Foster S. J. ( 2009). Iron-regulated surface determinant protein A mediates adhesion of Staphylococcus aureus to human corneocyte envelope proteins. Infect Immun 77:2408–2416 [View Article][PubMed]
    [Google Scholar]
  49. Collinson S. K., Clouthier S. C., Doran J. L., Banser P. A., Kay W. W. ( 1996). Salmonella enteritidis agfBAC operon encoding thin, aggregative fimbriae. J Bacteriol 178:662–667[PubMed]
    [Google Scholar]
  50. Cornelis G. R. ( 2010). The type III secretion injectisome, a complex nanomachine for intracellular ‘toxin’ delivery. Biol Chem 391:745–751 [View Article][PubMed]
    [Google Scholar]
  51. Corrigan R. M., Rigby D., Handley P., Foster T. J. ( 2007). The role of Staphylococcus aureus surface protein SasG in adherence and biofilm formation. Microbiology 153:2435–2446 [View Article][PubMed]
    [Google Scholar]
  52. Corrigan R. M., Miajlovic H., Foster T. J. ( 2009). Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol 9:22 [View Article][PubMed]
    [Google Scholar]
  53. Côté J. P., Berthiaume F., Houle S., Fairbrother J. M., Dozois C. M., Mourez M. ( 2012). Identification and mechanism of evolution of new alleles coding for the AIDA-I autotransporter of porcine pathogenic Escherichia coli . Appl Environ Microbiol 78:4597–4605 [View Article][PubMed]
    [Google Scholar]
  54. Crawford R. W., Reeve K. E., Gunn J. S. ( 2010). Flagellated but not hyperfimbriated Salmonella enterica serovar Typhimurium attaches to and forms biofilms on cholesterol-coated surfaces. J Bacteriol 192:2981–2990 [View Article][PubMed]
    [Google Scholar]
  55. Cucarella C., Solano C., Valle J., Amorena B., Lasa I., Penadés J. R. ( 2001). Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896 [View Article][PubMed]
    [Google Scholar]
  56. Cucarella C., Tormo M. A., Knecht E., Amorena B., Lasa I., Foster T. J., Penadés J. R. ( 2002). Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun 70:3180–3186 [View Article][PubMed]
    [Google Scholar]
  57. Das T., Krom B. P., van der Mei H. C., Busscher H. J., Sharma P. K. ( 2011). DNA-mediated bacterial aggregation is dictated by acid–base interactions. Soft Matter 7:2927–2935 [View Article]
    [Google Scholar]
  58. Desvaux M., Hébraud M. ( 2006). The protein secretion systems in Listeria: inside out bacterial virulence. FEMS Microbiol Rev 30:774–805 [View Article][PubMed]
    [Google Scholar]
  59. Desvaux M., Hébraud M., Henderson I. R., Pallen M. J. ( 2006). Type III secretion: what’s in a name?. Trends Microbiol 14:157–160 [View Article][PubMed]
    [Google Scholar]
  60. Desvaux M., Hébraud M., Talon R., Henderson I. R. ( 2009). Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17:139–145 [View Article][PubMed]
    [Google Scholar]
  61. Dibb-Fuller M. P., Allen-Vercoe E., Thorns C. J., Woodward M. J. ( 1999). Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis . Microbiology 145:1023–1031 [View Article][PubMed]
    [Google Scholar]
  62. Djafari S., Ebel F., Deibel C., Krämer S., Hudel M., Chakraborty T. ( 1997). Characterization of an exported protease from Shiga toxin-producing Escherichia coli . Mol Microbiol 25:771–784 [View Article][PubMed]
    [Google Scholar]
  63. Dorsey C. W., Laarakker M. C., Humphries A. D., Weening E. H., Bäumler A. J. ( 2005). Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor that binds fibronectin. Mol Microbiol 57:196–211 [View Article][PubMed]
    [Google Scholar]
  64. Dramsi S., Bourdichon F., Cabanes D., Lecuit M., Fsihi H., Cossart P. ( 2004). FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol 53:639–649 [View Article][PubMed]
    [Google Scholar]
  65. Duan Q. D., Zhou M. X., Zhu L. Q., Zhu G. Q. ( 2013). Flagella and bacterial pathogenicity. J Basic Microbiol 53:1–8 [View Article][PubMed]
    [Google Scholar]
  66. Dziewanowska K., Carson A. R., Patti J. M., Deobald C. F., Bayles K. W., Bohach G. A. ( 2000). Staphylococcal fibronectin binding protein interacts with heat shock protein 60 and integrins: role in internalization by epithelial cells. Infect Immun 68:6321–6328 [View Article][PubMed]
    [Google Scholar]
  67. Dziva F., Mahajan A., Cameron P., Currie C., McKendrick I. J., Wallis T. S., Smith D. G. E., Stevens M. P. ( 2007). EspP, a Type V-secreted serine protease of enterohaemorrhagic Escherichia coli O157:H7, influences intestinal colonization of calves and adherence to bovine primary intestinal epithelial cells. FEMS Microbiol Lett 271:258–264 [View Article][PubMed]
    [Google Scholar]
  68. Easton D. M., Totsika M., Allsopp L. P., Phan M.-D., Idris A., Wurpel D. J., Sherlock O., Zhang B., Venturini C. & other authors ( 2011). Characterization of EhaJ, a new autotransporter protein from enterohemorrhagic and enteropathogenic Escherichia coli . Front Microbiol 2:120 [View Article][PubMed]
    [Google Scholar]
  69. Erdem A. L., Avelino F., Xicohtencatl-Cortes J., Girón J. A. ( 2007). Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli . J Bacteriol 189:7426–7435 [View Article][PubMed]
    [Google Scholar]
  70. Farber J. M., Peterkin P. I. ( 1991). Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511[PubMed]
    [Google Scholar]
  71. Farfan M. J., Torres A. G. ( 2012). Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infect Immun 80:903–913 [View Article][PubMed]
    [Google Scholar]
  72. Farfan M. J., Cantero L., Vidal R., Botkin D. J., Torres A. G. ( 2011). Long polar fimbriae of enterohemorrhagic Escherichia coli O157:H7 bind to extracellular matrix proteins. Infect Immun 79:3744–3750 [View Article][PubMed]
    [Google Scholar]
  73. Fedtke I., Mader D., Kohler T., Moll H., Nicholson G., Biswas R., Henseler K., Götz F., Zähringer U., Peschel A. ( 2007). A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol 65:1078–1091 [View Article][PubMed]
    [Google Scholar]
  74. Fierer J., Guiney D. G. ( 2001). Diverse virulence traits underlying different clinical outcomes of Salmonella infection. J Clin Invest 107:775–780 [View Article][PubMed]
    [Google Scholar]
  75. Fitzgerald J. R., Loughman A., Keane F., Brennan M., Knobel M., Higgins J., Visai L., Speziale P., Cox D., Foster T. J. ( 2006). Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcγRIIa receptor. Mol Microbiol 59:212–230 [View Article][PubMed]
    [Google Scholar]
  76. Fitzhenry R., Dahan S., Torres A. G., Chong Y., Heuschkel R., Murch S. H., Thomson M., Kaper J. B., Frankel G., Phillips A. D. ( 2006). Long polar fimbriae and tissue tropism in Escherichia coli O157:H7. Microbes Infect 8:1741–1749 [View Article][PubMed]
    [Google Scholar]
  77. Friedrich M. J., Kinsey N. E., Vila J., Kadner R. J. ( 1993). Nucleotide sequence of a 13.9 kb segment of the 90 kb virulence plasmid of Salmonella typhimurium: the presence of fimbrial biosynthetic genes. Mol Microbiol 8:543–558 [View Article][PubMed]
    [Google Scholar]
  78. Garmendia J., Frankel G., Crepin V. F. ( 2005). Enteropathogenic and enterohemorrhagic Escherichia coli infections: translocation, translocation, translocation. Infect Immun 73:2573–2585 [View Article][PubMed]
    [Google Scholar]
  79. Garnett J. A., Martínez-Santos V. I., Saldaña Z., Pape T., Hawthorne W., Chan J., Simpson P. J., Cota E., Puente J. L. & other authors ( 2012). Structural insights into the biogenesis and biofilm formation by the Escherichia coli common pilus. Proc Natl Acad Sci U S A 109:3950–3955 [View Article][PubMed]
    [Google Scholar]
  80. Gerlach R. G., Jäckel D., Stecher B., Wagner C., Lupas A., Hardt W. D., Hensel M. ( 2007). Salmonella Pathogenicity Island 4 encodes a giant non-fimbrial adhesin and the cognate type 1 secretion system. Cell Microbiol 9:1834–1850 [View Article][PubMed]
    [Google Scholar]
  81. Gerstel U., Römling U. ( 2003). The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium . Res Microbiol 154:659–667 [View Article][PubMed]
    [Google Scholar]
  82. Gerstel U., Park C., Römling U. ( 2003). Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 49:639–654 [View Article][PubMed]
    [Google Scholar]
  83. Gómez M. I., Lee A., Reddy B., Muir A., Soong G., Pitt A., Cheung A., Prince A. ( 2004). Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat Med 10:842–848 [View Article][PubMed]
    [Google Scholar]
  84. Götz F. ( 2002). Staphylococcus and biofilms. Mol Microbiol 43:1367–1378 [View Article][PubMed]
    [Google Scholar]
  85. Griessl M. H., Schmid B., Kassler K., Braunsmann C., Ritter R., Barlag B., Stierhof Y. D., Sturm K. U., Danzer C. & other authors ( 2013). Structural insight into the giant Ca2+-binding adhesin SiiE: implications for the adhesion of Salmonella enterica to polarized epithelial cells. Structure 21:741–752 [View Article][PubMed]
    [Google Scholar]
  86. Gross M., Cramton S. E., Götz F., Peschel A. ( 2001). Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69:3423–3426 [View Article][PubMed]
    [Google Scholar]
  87. Haiko J., Westerlund-Wikström B. ( 2013). The role of the bacterial flagellum in adhesion and virulence. Biology (Basel) 2:1242–1267[PubMed]
    [Google Scholar]
  88. Hair P. S., Ward M. D., Semmes O. J., Foster T. J., Cunnion K. M. ( 2008). Staphylococcus aureus clumping factor A binds to complement regulator factor I and increases factor I cleavage of C3b. J Infect Dis 198:125–133 [View Article][PubMed]
    [Google Scholar]
  89. Hammar M., Bian Z., Normark S. ( 1996). Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli . Proc Natl Acad Sci U S A 93:6562–6566 [View Article][PubMed]
    [Google Scholar]
  90. Hammer N. D., Schmidt J. C., Chapman M. R. ( 2007). The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci U S A 104:12494–12499 [View Article][PubMed]
    [Google Scholar]
  91. Harmsen M., Lappann M., Knøchel S., Molin S. ( 2010). Role of extracellular DNA during biofilm formation by Listeria monocytogenes . Appl Environ Microbiol 76:2271–2279 [View Article][PubMed]
    [Google Scholar]
  92. Harris L. G., Tosatti S., Wieland M., Textor M., Richards R. G. ( 2004). Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 25:4135–4148 [View Article][PubMed]
    [Google Scholar]
  93. Hartleib J., Köhler N., Dickinson R. B., Chhatwal G. S., Sixma J. J., Hartford O. M., Foster T. J., Peters G., Kehrel B. E., Herrmann M. ( 2000). Protein A is the von Willebrand factor binding protein on Staphylococcus aureus . Blood 96:2149–2156[PubMed]
    [Google Scholar]
  94. Hartmann M. D., Grin I., Dunin-Horkawicz S., Deiss S., Linke D., Lupas A. N., Hernandez Alvarez B. ( 2012). Complete fiber structures of complex trimeric autotransporter adhesins conserved in enterobacteria. Proc Natl Acad Sci U S A 109:20907–20912 [View Article][PubMed]
    [Google Scholar]
  95. Hassan A. N., Frank J. F. ( 2004). Attachment of Escherichia coli O157:H7 grown in tryptic soy broth and nutrient broth to apple and lettuce surfaces as related to cell hydrophobicity, surface charge, and capsule production. Int J Food Microbiol 96:103–109 [View Article][PubMed]
    [Google Scholar]
  96. Haupt K., Reuter M., van den Elsen J., Burman J., Hälbich S., Richter J., Skerka C., Zipfel P. F. ( 2008). The Staphylococcus aureus protein Sbi acts as a complement inhibitor and forms a tripartite complex with host complement Factor H and C3b. PLoS Pathog 4:e1000250 [View Article][PubMed]
    [Google Scholar]
  97. Hefford M. A., D’Aoust S., Cyr T. D., Austin J. W., Sanders G., Kheradpir E., Kalmokoff M. L. ( 2005). Proteomic and microscopic analysis of biofilms formed by Listeria monocytogenes 568. Can J Microbiol 51:197–208 [View Article][PubMed]
    [Google Scholar]
  98. Heilmann C. ( 2011). Adhesion mechanisms of staphylococci. Adv Exp Med Biol 715:105–123 [View Article][PubMed]
    [Google Scholar]
  99. Heilmann C., Hartleib J., Hussain M. S., Peters G. ( 2005). The multifunctional Staphylococcus aureus autolysin Aaa mediates adherence to immobilized fibrinogen and fibronectin. Infect Immun 73:4793–4802 [View Article][PubMed]
    [Google Scholar]
  100. Heitmann V., Hörr V., Hussain M., Hansen U., Bruckner P., Faber C., Peters G., Löffler B. ( 2001). The role of Staphylococcus aureus adhesin Emp in staphylococcal infections: investigation of Emp binding sites to host structures and to the bacterial cell wall. Int J Med Microbiol 301:Suppl. 4778
    [Google Scholar]
  101. Henderson B., Martin A. ( 2011). Bacterial virulence in the moonlight: multitasking bacterial moonlighting proteins are virulence determinants in infectious disease. Infect Immun 79:3476–3491 [View Article][PubMed]
    [Google Scholar]
  102. Henderson B., Nair S., Pallas J., Williams M. A. ( 2011). Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 35:147–200 [View Article][PubMed]
    [Google Scholar]
  103. Herold S., Paton J. C., Paton A. W. ( 2009). Sab, a novel autotransporter of locus of enterocyte effacement-negative shiga-toxigenic Escherichia coli O113:H21, contributes to adherence and biofilm formation. Infect Immun 77:3234–3243 [View Article][PubMed]
    [Google Scholar]
  104. Hirschhausen N., Schlesier T., Schmidt M. A., Götz F., Peters G., Heilmann C. ( 2010). A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. Cell Microbiol 12:1746–1764 [View Article][PubMed]
    [Google Scholar]
  105. Huesca M., Peralta R., Sauder D. N., Simor A. E., McGavin M. J. ( 2002). Adhesion and virulence properties of epidemic Canadian methicillin-resistant Staphylococcus aureus strain 1: identification of novel adhesion functions associated with plasmin-sensitive surface protein. J Infect Dis 185:1285–1296 [View Article][PubMed]
    [Google Scholar]
  106. Hultgren S. J., Normark S., Abraham S. N. ( 1991). Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu Rev Microbiol 45:383–415 [View Article][PubMed]
    [Google Scholar]
  107. Hussain M., Becker K., von Eiff C., Schrenzel J., Peters G., Herrmann M. ( 2001). Identification and characterization of a novel 38.5-kilodalton cell surface protein of Staphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins. J Bacteriol 183:6778–6786 [View Article][PubMed]
    [Google Scholar]
  108. Izano E. A., Sadovskaya I., Wang H. L., Vinogradov E., Ragunath C., Ramasubbu N., Jabbouri S., Perry M. B., Kaplan J. B. ( 2008). Poly-N-acetylglucosamine mediates biofilm formation and detergent resistance in Aggregatibacter actinomycetemcomitans . Microb Pathog 44:52–60 [View Article][PubMed]
    [Google Scholar]
  109. Jain S., Chen J. ( 2007). Attachment and biofilm formation by various serotypes of Salmonella as influenced by cellulose production and thin aggregative fimbriae biosynthesis. J Food Prot 70:2473–2479[PubMed]
    [Google Scholar]
  110. Jordan D. M., Cornick N., Torres A. G., Dean-Nystrom E. A., Kaper J. B., Moon H. W. ( 2004). Long polar fimbriae contribute to colonization by Escherichia coli O157:H7 in vivo . Infect Immun 72:6168–6171 [View Article][PubMed]
    [Google Scholar]
  111. Jordan S. J., Perni S., Glenn S., Fernandes I., Barbosa M., Sol M., Tenreiro R. P., Chambel L., Barata B. & other authors ( 2008). Listeria monocytogenes biofilm-associated protein (BapL) may contribute to surface attachment of L. monocytogenes but is absent from many field isolates. Appl Environ Microbiol 74:5451–5456 [View Article][PubMed]
    [Google Scholar]
  112. Journet L., Hughes K. T., Cornelis G. R. ( 2005). Type III secretion: a secretory pathway serving both motility and virulence. Mol Membr Biol 22:41–50 [View Article][PubMed]
    [Google Scholar]
  113. Jucker B. A., Harms H., Hug S. J., Zehnder A. J. B. ( 1997). Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds. Colloids Surf B Biointerfaces 9:331–343 [View Article]
    [Google Scholar]
  114. Junkins A. D., Doyle M. P. ( 1992). Demonstration of exopolysaccharide production by enterohemorrhagic Escherichia coli . Curr Microbiol 25:9–17 [View Article][PubMed]
    [Google Scholar]
  115. Kadam S. R., den Besten H. M., van der Veen S., Zwietering M. H., Moezelaar R., Abee T. ( 2013). Diversity assessment of Listeria monocytogenes biofilm formation: impact of growth condition, serotype and strain origin. Int J Food Microbiol 165:259–264 [View Article][PubMed]
    [Google Scholar]
  116. Kader A., Simm R., Gerstel U., Morr M., Römling U. ( 2006). Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol 60:602–616 [View Article][PubMed]
    [Google Scholar]
  117. Karmali M. A., Gannon V., Sargeant J. M. ( 2010). Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol 140:360–370 [View Article][PubMed]
    [Google Scholar]
  118. Kingsley R. A., Santos R. L., Keestra A. M., Adams L. G., Bäumler A. J. ( 2002). Salmonella enterica serotype Typhimurium ShdA is an outer membrane fibronectin-binding protein that is expressed in the intestine. Mol Microbiol 43:895–905 [View Article][PubMed]
    [Google Scholar]
  119. Klapproth J. M., Scaletsky I. C. A., McNamara B. P., Lai L. C., Malstrom C., James S. P., Donnenberg M. S. ( 2000). A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect Immun 68:2148–2155 [View Article][PubMed]
    [Google Scholar]
  120. Korhonen T. K., Lounatmaa K., Ranta H., Kuusi N. ( 1980). Characterization of type 1 pili of Salmonella typhimurium LT2. J Bacteriol 144:800–805[PubMed]
    [Google Scholar]
  121. Krachler A. M., Orth K. ( 2011). Functional characterization of the interaction between bacterial adhesin multivalent adhesion molecule 7 (MAM7) protein and its host cell ligands. J Biol Chem 286:38939–38947 [View Article][PubMed]
    [Google Scholar]
  122. Kroupitski Y., Brandl M. T., Pinto R., Belausov E., Tamir-Ariel D., Burdman S., Sela (Saldinger) S. ( 2013). Identification of Salmonella enterica genes with a role in persistence on lettuce leaves during cold storage by recombinase-based in vivo expression technology. Phytopathology 103:362–372 [View Article][PubMed]
    [Google Scholar]
  123. Kumar S., Parvathi A., George J., Krohne G., Karunasagar I., Karunasagar I. ( 2009). A study on the effects of some laboratory-derived genetic mutations on biofilm formation by Listeria monocytogenes . World J Microbiol Biotechnol 25:527–531 [View Article]
    [Google Scholar]
  124. Lambert M. A., Smith S. G. J. ( 2008). The PagN protein of Salmonella enterica serovar Typhimurium is an adhesin and invasin. BMC Microbiol 8:142 [View Article][PubMed]
    [Google Scholar]
  125. Lapidot A., Yaron S. ( 2009). Transfer of Salmonella enterica serovar Typhimurium from contaminated irrigation water to parsley is dependent on curli and cellulose, the biofilm matrix components. J Food Prot 72:618–623[PubMed]
    [Google Scholar]
  126. Lasa I., Penadés J. R. ( 2006). Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157:99–107 [View Article][PubMed]
    [Google Scholar]
  127. Latasa C., Roux A., Toledo-Arana A., Ghigo J. M., Gamazo C., Penadés J. R., Lasa I. ( 2005). BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol 58:1322–1339 [View Article][PubMed]
    [Google Scholar]
  128. Latasa C., Solano C., Penadés J. R., Lasa I. ( 2006). Biofilm-associated proteins. C R Biol 329:849–857 [View Article][PubMed]
    [Google Scholar]
  129. Laurenceau R., Péhau-Arnaudet G., Baconnais S., Gault J., Malosse C., Dujeancourt A., Campo N., Chamot-Rooke J., Le Cam E. & other authors ( 2013). A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae . PLoS Pathog 9:e1003473 [View Article][PubMed]
    [Google Scholar]
  130. Leclerc S., Boerlin P., Gyles C., Dubreuil J. D., Mourez M., Fairbrother J. M., Harel J. ( 2007). paa, originally identified in attaching and effacing Escherichia coli, is also associated with enterotoxigenic E. coli . Res Microbiol 158:97–104 [View Article][PubMed]
    [Google Scholar]
  131. Lecuit M., Ohayon H., Braun L., Mengaud J., Cossart P. ( 1997). Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect Immun 65:5309–5319[PubMed]
    [Google Scholar]
  132. Ledeboer N. A., Frye J. G., McClelland M., Jones B. D. ( 2006). Salmonella enterica serovar Typhimurium requires the Lpf, Pef, and Tafi fimbriae for biofilm formation on HEp-2 tissue culture cells and chicken intestinal epithelium. Infect Immun 74:3156–3169 [View Article][PubMed]
    [Google Scholar]
  133. Ledesma M. A., Ochoa S. A., Cruz A., Rocha-Ramírez L. M., Mas-Oliva J., Eslava C. A., Girón J. A., Xicohtencatl-Cortes J. ( 2010). The hemorrhagic coli pilus (HCP) of Escherichia coli O157:H7 is an inducer of proinflammatory cytokine secretion in intestinal epithelial cells. PLoS ONE 5:e12127 [View Article][PubMed]
    [Google Scholar]
  134. Lee S. M., Chen J. ( 2004). Survival of Escherichia coli O157:H7 in set yogurt as influenced by the production of an exopolysaccharide, colanic acid. J Food Prot 67:252–255[PubMed]
    [Google Scholar]
  135. Lehti T. A., Bauchart P., Kukkonen M., Dobrindt U., Korhonen T. K., Westerlund-Wikström B. ( 2013). Phylogenetic group-associated differences in regulation of the common colonization factor Mat fimbria in Escherichia coli . Mol Microbiol 87:1200–1222 [View Article][PubMed]
    [Google Scholar]
  136. Lemon K. P., Higgins D. E., Kolter R. ( 2007). Flagellar motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189:4418–4424 [View Article][PubMed]
    [Google Scholar]
  137. Lianou A., Koutsoumanis K. P. ( 2013). Strain variability of the behavior of foodborne bacterial pathogens: a review. Int J Food Microbiol 167:310–321 [View Article][PubMed]
    [Google Scholar]
  138. Lindbäck T., Rottenberg M. E., Roche S. M., Rørvik L. M. ( 2010). The ability to enter into an avirulent viable but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment. Vet Res 41:8 [View Article][PubMed]
    [Google Scholar]
  139. Lindén S. K., Bierne H., Sabet C., Png C. W., Florin T. H., McGuckin M. A., Cossart P. ( 2008). Listeria monocytogenes internalins bind to the human intestinal mucin MUC2. Arch Microbiol 190:101–104 [View Article][PubMed]
    [Google Scholar]
  140. Lloyd S. J., Ritchie J. M., Rojas-Lopez M., Blumentritt C. A., Popov V. L., Greenwich J. L., Waldor M. K., Torres A. G. ( 2012). A double, long polar fimbria mutant of Escherichia coli O157:H7 expresses Curli and exhibits reduced in vivo colonization. Infect Immun 80:914–920 [View Article][PubMed]
    [Google Scholar]
  141. Loughman A., Fitzgerald J. R., Brennan M. P., Higgins J., Downer R., Cox D., Foster T. J. ( 2005). Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol Microbiol 57:804–818 [View Article][PubMed]
    [Google Scholar]
  142. Low A. S., Dziva F., Torres A. G., Martinez J. L., Rosser T., Naylor S., Spears K., Holden N., Mahajan A. & other authors ( 2006a). Cloning, expression, and characterization of fimbrial operon F9 from enterohemorrhagic Escherichia coli O157:H7. Infect Immun 74:2233–2244 [View Article][PubMed]
    [Google Scholar]
  143. Low A. S., Holden N., Rosser T., Roe A. J., Constantinidou C., Hobman J. L., Smith D. G. E., Low J. C., Gally D. L. ( 2006b). Analysis of fimbrial gene clusters and their expression in enterohaemorrhagic Escherichia coli O157:H7. Environ Microbiol 8:1033–1047 [View Article][PubMed]
    [Google Scholar]
  144. Lowy F. D. ( 1998). Staphylococcus aureus infections. N Engl J Med 339:520–532 [View Article][PubMed]
    [Google Scholar]
  145. Lu Y., Iyoda S., Satou H., Satou H., Itoh K., Saitoh T., Watanabe H. ( 2006). A new immunoglobulin-binding protein, EibG, is responsible for the chain-like adhesion phenotype of locus of enterocyte effacement-negative, shiga toxin-producing Escherichia coli . Infect Immun 74:5747–5755 [View Article][PubMed]
    [Google Scholar]
  146. Maira-Litrán T., Kropec A., Abeygunawardana C., Joyce J., Mark G. III, Goldmann D. A., Pier G. B. ( 2002). Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun 70:4433–4440 [View Article][PubMed]
    [Google Scholar]
  147. Majowicz S. E., Musto J., Scallan E., Angulo F. J., Kirk M., O’Brien S. J., Jones T. F., Fazil A., Hoekstra R. M. International Collaboration on Enteric Disease ‘Burden of Illness’ Studies ( 2010). The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889 [View Article][PubMed]
    [Google Scholar]
  148. Mann E. E., Rice K. C., Boles B. R., Endres J. L., Ranjit D., Chandramohan L., Tsang L. H., Smeltzer M. S., Horswill A. R., Bayles K. W. ( 2009). Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS ONE 4:e5822 [View Article][PubMed]
    [Google Scholar]
  149. Marchetti M., Sirard J. C., Sansonetti P., Pringault E., Kernéis S. ( 2004). Interaction of pathogenic bacteria with rabbit appendix M cells: bacterial motility is a key feature in vivo . Microbes Infect 6:521–528 [View Article][PubMed]
    [Google Scholar]
  150. Marsh E. J., Luo H., Wang H. ( 2003). A three-tiered approach to differentiate Listeria monocytogenes biofilm-forming abilities. FEMS Microbiol Lett 228:203–210 [View Article][PubMed]
    [Google Scholar]
  151. Matthysse A. G., Deora R., Mishra M., Torres A. G. ( 2008). Polysaccharides cellulose, poly-β-1,6-N-acetyl-d-glucosamine, and colanic acid are required for optimal binding of Escherichia coli O157:H7 strains to alfalfa sprouts and K-12 strains to plastic but not for binding to epithelial cells. Appl Environ Microbiol 74:2384–2390 [View Article][PubMed]
    [Google Scholar]
  152. McDevitt D., Francois P., Vaudaux P., Foster T. J. ( 1994). Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus . Mol Microbiol 11:237–248 [View Article][PubMed]
    [Google Scholar]
  153. Mengaud J., Ohayon H., Gounon P., Mege R.-M., Cossart P. ( 1996). E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932 [View Article][PubMed]
    [Google Scholar]
  154. Merkel V., Ohder B., Bielaszewska M., Zhang W., Fruth A., Menge C., Borrmann E., Middendorf B., Müthing J. & other authors ( 2010). Distribution and phylogeny of immunoglobulin-binding protein G in Shiga toxin-producing Escherichia coli and its association with adherence phenotypes. Infect Immun 78:3625–3636 [View Article][PubMed]
    [Google Scholar]
  155. Miajlovic H., Zapotoczna M., Geoghegan J. A., Kerrigan S. W., Speziale P., Foster T. J. ( 2010). Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIIb/IIIa receptor on platelets. Microbiology 156:920–928 [View Article][PubMed]
    [Google Scholar]
  156. Mika F., Hengge R. ( 2013). Small regulatory RNAs in the control of motility and biofilm formation in E. coli and Salmonella . Int J Mol Sci 14:4560–4579 [View Article][PubMed]
    [Google Scholar]
  157. Müller K. H., Collinson S. K., Trust T. J., Kay W. W. ( 1991). Type 1 fimbriae of Salmonella enteritidis . J Bacteriol 173:4765–4772[PubMed]
    [Google Scholar]
  158. Müsken A., Bielaszewska M., Greune L., Schweppe C. H., Müthing J., Schmidt H., Schmidt M. A., Karch H., Zhang W. ( 2008). Anaerobic conditions promote expression of Sfp fimbriae and adherence of sorbitol-fermenting enterohemorrhagic Escherichia coli O157:NM to human intestinal epithelial cells. Appl Environ Microbiol 74:1087–1093 [View Article][PubMed]
    [Google Scholar]
  159. Nataro J. P., Kaper J. B. ( 1998). Diarrheagenic Escherichia coli . Clin Microbiol Rev 11:142–201[PubMed]
    [Google Scholar]
  160. Navarre W. W., Schneewind O. ( 1994). Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in gram-positive bacteria. Mol Microbiol 14:115–121 [View Article][PubMed]
    [Google Scholar]
  161. Nguyen T., Ghebrehiwet B., Peerschke E. I. B. ( 2000). Staphylococcus aureus protein A recognizes platelet gC1qR/p33: a novel mechanism for staphylococcal interactions with platelets. Infect Immun 68:2061–2068 [View Article][PubMed]
    [Google Scholar]
  162. Ní Eidhin D., Perkins S., Francois P., Vaudaux P., Höök M., Foster T. J. ( 1998). Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus . Mol Microbiol 30:245–257 [View Article][PubMed]
    [Google Scholar]
  163. Nicholls L., Grant T. H., Robins-Browne R. M. ( 2000). Identification of a novel genetic locus that is required for in vitro adhesion of a clinical isolate of enterohaemorrhagic Escherichia coli to epithelial cells. Mol Microbiol 35:275–288 [View Article][PubMed]
    [Google Scholar]
  164. Niemann S., Spehr N., Van Aken H., Morgenstern E., Peters G., Herrmann M., Kehrel B. E. ( 2004). Soluble fibrin is the main mediator of Staphylococcus aureus adhesion to platelets. Circulation 110:193–200 [View Article][PubMed]
    [Google Scholar]
  165. O’Brien L. M., Walsh E. J., Massey R. C., Peacock S. J., Foster T. J. ( 2002a). Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell Microbiol 4:759–770 [View Article][PubMed]
    [Google Scholar]
  166. O’Brien L., Kerrigan S. W., Kaw G., Hogan M., Penadés J., Litt D., Fitzgerald D. J., Foster T. J., Cox D. ( 2002b). Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol Microbiol 44:1033–1044 [View Article][PubMed]
    [Google Scholar]
  167. Ogunniyi A. D., Manning P. A., Kotlarski I. ( 1994). A Salmonella enteritidis 11RX pilin induces strong T-lymphocyte responses. Infect Immun 62:5376–5383
    [Google Scholar]
  168. Okshevsky M., Meyer R. L. ( 2013). The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol1–11 [View Article][PubMed]
    [Google Scholar]
  169. O’Neil H. S., Marquis H. ( 2006). Listeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion. Infect Immun 74:6675–6681 [View Article][PubMed]
    [Google Scholar]
  170. O’Neill E., Pozzi C., Houston P., Humphreys H., Robinson D. A., Loughman A., Foster T. J., O’Gara J. P. ( 2008). A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190:3835–3850 [View Article][PubMed]
    [Google Scholar]
  171. Orth D., Ehrlenbach S., Brockmeyer J., Khan A. B., Huber G., Karch H., Sarg B., Lindner H., Würzner R. ( 2010). EspP, a serine protease of enterohemorrhagic Escherichia coli, impairs complement activation by cleaving complement factors C3/C3b and C5. Infect Immun 78:4294–4301 [View Article][PubMed]
    [Google Scholar]
  172. Ouyang Y., Li J., Dong Y., Blakely L. V., Cao M. ( 2012). Genome-wide screening of genes required for Listeria monocytogenes biofilm formation. J Biotech Res 4:13–25
    [Google Scholar]
  173. Pallen M. J., Beatson S. A., Bailey C. M. ( 2005). Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective. FEMS Microbiol Rev 29:201–229 [View Article][PubMed]
    [Google Scholar]
  174. Park P. W., Broekelmann T. J., Mecham B. R., Mecham R. P. ( 1999). Characterization of the elastin binding domain in the cell-surface 25-kDa elastin-binding protein of Staphylococcus aureus (EbpS). J Biol Chem 274:2845–2850 [View Article][PubMed]
    [Google Scholar]
  175. Paton A. W., Voss E., Manning P. A., Paton J. C. ( 1998). Antibodies to lipopolysaccharide block adherence of Shiga toxin-producing Escherichia coli to human intestinal epithelial (Henle 407) cells. Microb Pathog 24:57–63 [View Article][PubMed]
    [Google Scholar]
  176. Paton A. W., Srimanote P., Woodrow M. C., Paton J. C. ( 2001). Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect Immun 69:6999–7009 [View Article][PubMed]
    [Google Scholar]
  177. Peel M., Donachie W., Shaw A. ( 1988). Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting. J Gen Microbiol 134:2171–2178[PubMed]
    [Google Scholar]
  178. Peralta R. C., Yokoyama H., Ikemori Y., Kuroki M., Kodama Y. ( 1994). Passive immunisation against experimental salmonellosis in mice by orally administered hen egg-yolk antibodies specific for 14-kDa fimbriae of Salmonella enteritidis . J Med Microbiol 41:29–35 [CrossRef]
    [Google Scholar]
  179. Pereira M. P., D’Elia M. A., Troczynska J., Brown E. D. ( 2008). Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases. J Bacteriol 190:5642–5649 [View Article][PubMed]
    [Google Scholar]
  180. Poulsen L. V. ( 1999). Microbial biofilm in food processing. LWT– Food Sci Technol 32:321–326 [View Article]
    [Google Scholar]
  181. Prouty A. M., Gunn J. S. ( 2003). Comparative analysis of Salmonella enterica serovar Typhimurium biofilm formation on gallstones and on glass. Infect Immun 71:7154–7158 [View Article][PubMed]
    [Google Scholar]
  182. Prouty A. M., Schwesinger W. H., Gunn J. S. ( 2002). Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp.. Infect Immun 70:2640–2649 [View Article][PubMed]
    [Google Scholar]
  183. Raghunathan D., Wells T. J., Morris F. C., Shaw R. K., Bobat S., Peters S. E., Paterson G. K., Jensen K. T., Leyton D. L. & other authors ( 2011). SadA, a trimeric autotransporter from Salmonella enterica serovar Typhimurium, can promote biofilm formation and provides limited protection against infection. Infect Immun 79:4342–4352 [View Article][PubMed]
    [Google Scholar]
  184. Ravi M., Ngeleka M., Kim S. H., Gyles C., Berthiaume F., Mourez M., Middleton D., Simko E. ( 2007). Contribution of AIDA-I to the pathogenicity of a porcine diarrheagenic Escherichia coli and to intestinal colonization through biofilm formation in pigs. Vet Microbiol 120:308–319 [View Article][PubMed]
    [Google Scholar]
  185. Ray B., Bhunia A. ( 2007). Fundamental Food Microbiology, 4th edn. New York: CRC Press;
    [Google Scholar]
  186. Reid G., Sobel J. D. ( 1987). Bacterial adherence in the pathogenesis of urinary tract infection: a review. Rev Infect Dis 9:470–487 [View Article][PubMed]
    [Google Scholar]
  187. Rendón M. A., Saldaña Z., Erdem A. L., Monteiro-Neto V., Vázquez A., Kaper J. B., Puente J. L., Girón J. A. ( 2007). Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci U S A 104:10637–10642 [View Article][PubMed]
    [Google Scholar]
  188. Renier S., Hébraud M., Desvaux M. ( 2011). Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen. Environ Microbiol 13:835–850 [View Article][PubMed]
    [Google Scholar]
  189. Renier S., Micheau P., Talon R., Hébraud M., Desvaux M. ( 2012). Subcellular localization of extracytoplasmic proteins in monoderm bacteria: rational secretomics-based strategy for genomic and proteomic analyses. PLoS ONE 7:e42982 [View Article][PubMed]
    [Google Scholar]
  190. Renier S., Chambon C., Viala D., Chagnot C., Hébraud M., Desvaux M. ( 2013). Exoproteomic analysis of the SecA2-dependent secretion in Listeria monocytogenes EGD-e. J Proteomics 80:183–195 [View Article][PubMed]
    [Google Scholar]
  191. Rice K. C., Mann E. E., Endres J. L., Weiss E. C., Cassat J. E., Smeltzer M. S., Bayles K. W. ( 2007). The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus . Proc Natl Acad Sci U S A 104:8113–8118 [View Article][PubMed]
    [Google Scholar]
  192. Roche F. M., Meehan M., Foster T. J. ( 2003b). The Staphylococcus aureus surface protein SasG and its homologues promote bacterial adherence to human desquamated nasal epithelial cells. Microbiology 149:2759–2767 [View Article][PubMed]
    [Google Scholar]
  193. Roche F. M., Downer R., Keane F., Speziale P., Park P. W., Foster T. J. ( 2004). The N-terminal A domain of fibronectin-binding proteins A and B promotes adhesion of Staphylococcus aureus to elastin. J Biol Chem 279:38433–38440 [View Article][PubMed]
    [Google Scholar]
  194. Roche S. M., Gracieux P., Albert I., Gouali M., Jacquet C., Martin P. M. V., Velge P. ( 2003a). Experimental validation of low virulence in field strains of Listeria monocytogenes . Infect Immun 71:3429–3436 [View Article][PubMed]
    [Google Scholar]
  195. Römling U., Bian Z., Hammar M., Sierralta W. D., Normark S. ( 1998a). Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180:722–731[PubMed]
    [Google Scholar]
  196. Römling U., Sierralta W. D., Eriksson K., Normark S. ( 1998b). Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28:249–264 [View Article][PubMed]
    [Google Scholar]
  197. Römling U., Rohde M., Olsén A., Normark S., Reinköster J. ( 2000). AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36:10–23 [View Article][PubMed]
    [Google Scholar]
  198. Rubio C., Costa D., Bellon-Fontaine M. N., Relkin P., Pradier C. M., Marcus P. ( 2002). Characterization of bovine serum albumin adsorption on chromium and AISI 304 stainless steel, consequences for the Pseudomonas fragi K1 adhesion. Colloids Surf B Biointerfaces 24:193–205 [View Article]
    [Google Scholar]
  199. Ryu J. H., Beuchat L. R. ( 2005). Biofilm formation by Escherichia coli O157:H7 on stainless steel: effect of exopolysaccharide and curli production on its resistance to chlorine. Appl Environ Microbiol 71:247–254 [View Article][PubMed]
    [Google Scholar]
  200. Ryu J. H., Kim H., Beuchat L. R. ( 2004). Attachment and biofilm formation by Escherichia coli O157:H7 on stainless steel as influenced by exopolysaccharide production, nutrient availability, and temperature. J Food Prot 67:2123–2131[PubMed]
    [Google Scholar]
  201. Sabet C., Toledo-Arana A., Personnic N., Lecuit M., Dubrac S., Poupel O., Gouin E., Nahori M. A., Cossart P., Bierne H. ( 2008). The Listeria monocytogenes virulence factor InlJ is specifically expressed in vivo and behaves as an adhesin. Infect Immun 76:1368–1378 [View Article][PubMed]
    [Google Scholar]
  202. Saini N. K., Sharma M., Chandolia A., Pasricha R., Brahmachari V., Bose M. ( 2008). Characterization of Mce4A protein of Mycobacterium tuberculosis: role in invasion and survival. BMC Microbiol 8:200 [View Article][PubMed]
    [Google Scholar]
  203. Saldaña Z., Sánchez E., Xicohtencatl-Cortes J., Puente J. L., Girón J. A. ( 2011). Surface structures involved in plant stomata and leaf colonization by shiga-toxigenic Escherichia coli O157:H7. Front Microbiol 2:119 [View Article][PubMed]
    [Google Scholar]
  204. Samadder P., Xicohtencatl-Cortes J., Saldaña Z., Jordan D., Tarr P. I., Kaper J. B., Girón J. A. ( 2009). The Escherichia coli ycbQRST operon encodes fimbriae with laminin-binding and epithelial cell adherence properties in Shiga-toxigenic E. coli O157:H7. Environ Microbiol 11:1815–1826 [View Article][PubMed]
    [Google Scholar]
  205. Santiago N. I., Zipf A., Bhunia A. K. ( 1999). Influence of temperature and growth phase on expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes . Appl Environ Microbiol 65:2765–2769[PubMed]
    [Google Scholar]
  206. Schaumburg J., Diekmann O., Hagendorff P., Bergmann S., Rohde M., Hammerschmidt S., Jänsch L., Wehland J., Kärst U. ( 2004). The cell wall subproteome of Listeria monocytogenes . Proteomics 4:2991–3006 [View Article][PubMed]
    [Google Scholar]
  207. Schirm M., Kalmokoff M., Aubry A., Thibault P., Sandoz M., Logan S. M. ( 2004). Flagellin from Listeria monocytogenes is glycosylated with β-O-linked N-acetylglucosamine. J Bacteriol 186:6721–6727 [View Article][PubMed]
    [Google Scholar]
  208. Schroeder K., Jularic M., Horsburgh S. M., Hirschhausen N., Neumann C., Bertling A., Schulte A., Foster S., Kehrel B. E. & other authors ( 2009). Molecular characterization of a novel Staphylococcus aureus surface protein (SasC) involved in cell aggregation and biofilm accumulation. PLoS ONE 4:e7567 [View Article][PubMed]
    [Google Scholar]
  209. Sharma M., Lakshman S., Ferguson S., Ingram D. T., Luo Y. G., Patel J. ( 2011). Effect of modified atmosphere packaging on the persistence and expression of virulence factors of Escherichia coli O157:H7 on shredded iceberg lettuce. J Food Prot 74:718–726 [View Article][PubMed]
    [Google Scholar]
  210. Sharma-Kuinkel B. K., Mann E. E., Ahn J. S., Kuechenmeister L. J., Dunman P. M., Bayles K. W. ( 2009). The Staphylococcus aureus LytSR two-component regulatory system affects biofilm formation. J Bacteriol 191:4767–4775 [View Article][PubMed]
    [Google Scholar]
  211. Shaw R. K., Berger C. N., Feys B., Knutton S., Pallen M. J., Frankel G. ( 2008). Enterohemorrhagic Escherichia coli exploits EspA filaments for attachment to salad leaves. Appl Environ Microbiol 74:2908–2914 [View Article][PubMed]
    [Google Scholar]
  212. Shen Y., Naujokas M., Park M., Ireton K. ( 2000). InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103:501–510 [View Article][PubMed]
    [Google Scholar]
  213. Siboo I. R., Cheung A. L., Bayer A. S., Sullam P. M. ( 2001). Clumping factor A mediates binding of Staphylococcus aureus to human platelets. Infect Immun 69:3120–3127 [View Article][PubMed]
    [Google Scholar]
  214. Siboo I. R., Chambers H. F., Sullam P. M. ( 2005). Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect Immun 73:2273–2280 [View Article][PubMed]
    [Google Scholar]
  215. Signäs C., Raucci G., Jönsson K., Lindgren P. E., Anantharamaiah G. M., Höök M., Lindberg M. ( 1989). Nucleotide sequence of the gene for a fibronectin-binding protein from Staphylococcus aureus: use of this peptide sequence in the synthesis of biologically active peptides. Proc Natl Acad Sci U S A 86:699–703 [View Article][PubMed]
    [Google Scholar]
  216. Simm R., Lusch A., Kader A., Andersson M., Römling U. ( 2007). Role of EAL-containing proteins in multicellular behavior of Salmonella enterica serovar Typhimurium. J Bacteriol 189:3613–3623 [View Article][PubMed]
    [Google Scholar]
  217. Slanec T., Schmidt H. ( 2011). Specific expression of adherence-related genes in Escherichia coli O157:H7 strain EDL933 after heat treatment in ground beef. J Food Prot 74:1434–1440 [View Article][PubMed]
    [Google Scholar]
  218. Smith E. J., Corrigan R. M., van der Sluis T., Gründling A., Speziale P., Geoghegan J. A., Foster T. J. ( 2012). The immune evasion protein Sbi of Staphylococcus aureus occurs both extracellularly and anchored to the cell envelope by binding lipoteichoic acid. Mol Microbiol 83:789–804 [View Article][PubMed]
    [Google Scholar]
  219. Solano C., García B., Valle J., Berasain C., Ghigo J. M., Gamazo C., Lasa I. ( 2002). Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793–808 [View Article][PubMed]
    [Google Scholar]
  220. Stevens M. P., van Diemen P. M., Frankel G., Phillips A. D., Wallis T. S. ( 2002). Efa1 influences colonization of the bovine intestine by shiga toxin-producing Escherichia coli serotypes O5 and O111. Infect Immun 70:5158–5166 [View Article][PubMed]
    [Google Scholar]
  221. Stevens M. P., Roe A. J., Vlisidou I., van Diemen P. M., La Ragione R. M., Best A., Woodward M. J., Gally D. L., Wallis T. S. ( 2004). Mutation of toxB and a truncated version of the efa-1 gene in Escherichia coli O157:H7 influences the expression and secretion of locus of enterocyte effacement-encoded proteins but not intestinal colonization in calves or sheep. Infect Immun 72:5402–5411 [View Article][PubMed]
    [Google Scholar]
  222. Switalski L. M., Speziale P., Höök M. ( 1989). Isolation and characterization of a putative collagen receptor from Staphylococcus aureus strain Cowan 1. J Biol Chem 264:21080–21086[PubMed]
    [Google Scholar]
  223. Tampakaki A. P., Fadouloglou V. E., Gazi A. D., Panopoulos N. J., Kokkinidis M. ( 2004). Conserved features of type III secretion. Cell Microbiol 6:805–816 [View Article][PubMed]
    [Google Scholar]
  224. Tarr P. I., Bilge S. S., Vary J. C. Jr, Jelacic S., Habeeb R. L., Ward T. R., Baylor M. R., Besser T. E. ( 2000). Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect Immun 68:1400–1407 [View Article][PubMed]
    [Google Scholar]
  225. Thanassi D. G., Hultgren S. J. ( 2000). Assembly of complex organelles: pilus biogenesis in gram-negative bacteria as a model system. Methods 20:111–126 [View Article][PubMed]
    [Google Scholar]
  226. Todhanakasem T., Young G. M. ( 2008). Loss of flagellum-based motility by Listeria monocytogenes results in formation of hyperbiofilms. J Bacteriol 190:6030–6034 [View Article][PubMed]
    [Google Scholar]
  227. Tormo M. A., Knecht E., Götz F., Lasa I., Penadés J. R. ( 2005). Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer?. Microbiology 151:2465–2475 [View Article][PubMed]
    [Google Scholar]
  228. Tormo M. A., Ubeda C., Marti M., Maiques E., Cucarella C., Valle J., Foster T. J., Lasa I., Penades J. R. ( 2007). Phase-variable expression of the biofilm-associated protein (Bap) in Staphylococcus aureus . Microbiology 15317021710 [CrossRef]
    [Google Scholar]
  229. Torres A. G., Giron J. A., Perna N. T., Burland V., Blattner F. R., Avelino-Flores F., Kaper J. B. ( 2002a). Identification and characterization of lpfABCC′DE, a fimbrial operon of enterohemorrhagic Escherichia coli O157:H7. Infect Immun 70:5416–5427 [View Article][PubMed]
    [Google Scholar]
  230. Torres A. G., Perna N. T., Burland V., Ruknudin A., Blattner F. R., Kaper J. B. ( 2002b). Characterization of Cah, a calcium-binding and heat-extractable autotransporter protein of enterohaemorrhagic Escherichia coli . Mol Microbiol 45:951–966 [View Article][PubMed]
    [Google Scholar]
  231. Torres A. G., Kanack K. J., Tutt C. B., Popov V., Kaper J. B. ( 2004). Characterization of the second long polar (LP) fimbriae of Escherichia coli O157:H7 and distribution of LP fimbriae in other pathogenic E. coli strains. FEMS Microbiol Lett 238:333–344[PubMed]
    [Google Scholar]
  232. Torres A. G., Jeter C., Langley W., Matthysse A. G. ( 2005). Differential binding of Escherichia coli O157:H7 to alfalfa, human epithelial cells, and plastic is mediated by a variety of surface structures. Appl Environ Microbiol 71:8008–8015 [View Article][PubMed]
    [Google Scholar]
  233. Torres A. G., Milflores-Flores L., Garcia-Gallegos J. G., Patel S. D., Best A., La Ragione R. M., Martinez-Laguna Y., Woodward M. J. ( 2007). Environmental regulation and colonization attributes of the long polar fimbriae (LPF) of Escherichia coli O157:H7. Int J Med Microbiol 297:177–185 [View Article][PubMed]
    [Google Scholar]
  234. Totsika M., Wells T. J., Beloin C., Valle J., Allsopp L. P., King N. P., Ghigo J. M., Schembri M. A. ( 2012). Molecular characterization of the EhaG and UpaG trimeric autotransporter proteins from pathogenic Escherichia coli . Appl Environ Microbiol 78:2179–2189 [View Article][PubMed]
    [Google Scholar]
  235. Tresse O., Lebret V., Benezech T., Faille C. ( 2006). Comparative evaluation of adhesion, surface properties, and surface protein composition of Listeria monocytogenes strains after cultivation at constant pH of 5 and 7. J Appl Microbiol 101:53–62 [View Article][PubMed]
    [Google Scholar]
  236. Tresse O., Lebret V., Garmyn D., Dussurget O. ( 2009). The impact of growth history and flagellation on the adhesion of various Listeria monocytogenes strains to polystyrene. Can J Microbiol 55:189–196 [View Article][PubMed]
    [Google Scholar]
  237. Tükel C., Nishimori J. H., Wilson R. P., Winter M. G., Keestra A. M., van Putten J. P. M., Bäumler A. J. ( 2010). Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms. Cell Microbiol 12:1495–1505 [View Article][PubMed]
    [Google Scholar]
  238. Tung H., Guss B., Hellman U., Persson L., Rubin K., Rydén C. ( 2000). A bone sialoprotein-binding protein from Staphylococcus aureus: a member of the staphylococcal Sdr family. Biochem J 345:611–619 [View Article][PubMed]
    [Google Scholar]
  239. Ugorski M., Kisiela D., Wieliczko A. ( 2001). Fimbriae of Salmonella enterica serovar Enteritidis. Med Weter 57:714–718
    [Google Scholar]
  240. Uhlén M., Guss B., Nilsson B., Gatenbeck S., Philipson L., Lindberg M. ( 1984). Complete sequence of the staphylococcal gene encoding protein A. A gene evolved through multiple duplications. J Biol Chem 259:1695–1702[PubMed]
    [Google Scholar]
  241. Valderrama W. B., Cutter C. N. ( 2013). An ecological perspective of Listeria monocytogenes biofilms in food processing facilities. Crit Rev Food Sci Nutr 53:801–817 [View Article][PubMed]
    [Google Scholar]
  242. Van Houdt R., Michiels C. W. ( 2010). Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131 [View Article][PubMed]
    [Google Scholar]
  243. Vatanyoopaisarn S., Nazli A., Dodd C. E. R., Rees C. E. D., Waites W. M. ( 2000). Effect of flagella on initial attachment of Listeria monocytogenes to stainless steel. Appl Environ Microbiol 66:860–863 [View Article][PubMed]
    [Google Scholar]
  244. Verran J., Airey P., Packer A., Whitehead K. A. ( 2008). Microbial retention on open food contact surfaces and implications for food contamination. Adv Appl Microbiol 64:223–246 [View Article][PubMed]
    [Google Scholar]
  245. Vestby L. K., Møretrø T., Ballance S., Langsrud S., Nesse L. L. ( 2009a). Survival potential of wild type cellulose deficient Salmonella from the feed industry. BMC Vet Res 5:43 [View Article][PubMed]
    [Google Scholar]
  246. Vestby L. K., Møretrø T., Langsrud S., Heir E., Nesse L. L. ( 2009b). Biofilm forming abilities of Salmonella are correlated with persistence in fish meal- and feed factories. BMC Vet Res 5:20 [View Article][PubMed]
    [Google Scholar]
  247. Vidal M. A., Conde F. P. ( 1985). Alternative mechanism of protein A–immunoglobulin interaction the VH-associated reactivity of a monoclonal human IgM. J Immunol 135:1232–1238[PubMed]
    [Google Scholar]
  248. Vignon G., Köhler R., Larquet E., Giroux S., Prévost M. C., Roux P., Pugsley A. P. ( 2003). Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides. J Bacteriol 185:3416–3428 [View Article][PubMed]
    [Google Scholar]
  249. Vivant A. L., Garmyn D., Piveteau P. ( 2013). Listeria monocytogenes, a down-to-earth pathogen. Front Cell Infect Microbiol 3:87 [View Article][PubMed]
    [Google Scholar]
  250. Wagner C., Hensel M. ( 2011). Adhesive mechanisms of Salmonella enterica . Bacterial Adhesion: Chemistry, Biology and Physics17–34 Linke D., Goldman A. New York: Springer; [View Article]
    [Google Scholar]
  251. Wagner C., Polke M., Gerlach R. G., Linke D., Stierhof Y. D., Schwarz H., Hensel M. ( 2011). Functional dissection of SiiE, a giant non-fimbrial adhesin of Salmonella enterica . Cell Microbiol 13:1286–1301 [View Article][PubMed]
    [Google Scholar]
  252. Wampler J. L., Kim K. P., Jaradat Z., Bhunia A. K. ( 2004). Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells. Infect Immun 72:931–936 [View Article][PubMed]
    [Google Scholar]
  253. Wang G. Q., Xia Y., Cui J., Gu Z. N., Song Y. D., Chen Y. Q., Chen H. Q., Zhang H., Chen W. ( 2013). The roles of moonlighting proteins in bacteria. Curr Issues Mol Biol 16:15–22[PubMed]
    [Google Scholar]
  254. Wann E. R., Gurusiddappa S., Hook M. ( 2000). The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 275:13863–13871 [View Article][PubMed]
    [Google Scholar]
  255. Weidenmaier C., Kokai-Kun J. F., Kristian S. A., Chanturiya T., Kalbacher H., Gross M., Nicholson G., Neumeister B., Mond J. J., Peschel A. ( 2004). Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10:243–245 [View Article][PubMed]
    [Google Scholar]
  256. Weidenmaier C., Peschel A., Xiong Y. Q., Kristian S. A., Dietz K., Yeaman M. R., Bayer A. S. ( 2005). Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in a rabbit model of endocarditis. J Infect Dis 191:1771–1777 [View Article][PubMed]
    [Google Scholar]
  257. Weiss A., Brockmeyer J. ( 2013). Prevalence, biogenesis, and functionality of the serine protease autotransporter EspP. Toxins (Basel) 5:25–48 [View Article][PubMed]
    [Google Scholar]
  258. Wells T. J., Sherlock O., Rivas L., Mahajan A., Beatson S. A., Torpdahl M., Webb R. I., Allsopp L. P., Gobius K. S. & other authors ( 2008). EhaA is a novel autotransporter protein of enterohemorrhagic Escherichia coli O157:H7 that contributes to adhesion and biofilm formation. Environ Microbiol 10:589–604 [View Article][PubMed]
    [Google Scholar]
  259. Wells T. J., McNeilly T. N., Totsika M., Mahajan A., Gally D. L., Schembri M. A. ( 2009). The Escherichia coli O157:H7 EhaB autotransporter protein binds to laminin and collagen I and induces a serum IgA response in O157:H7 challenged cattle. Environ Microbiol 11:1803–1814 [View Article][PubMed]
    [Google Scholar]
  260. Whitfield C. ( 2006). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli . Annu Rev Biochem 75:39–68 [View Article][PubMed]
    [Google Scholar]
  261. Williams V., Fletcher M. ( 1996). Pseudomonas fluorescens adhesion and transport through porous media are affected by lipopolysaccharide composition. Appl Environ Microbiol 62:100–104[PubMed]
    [Google Scholar]
  262. Wong A. R. C., Pearson J. S., Bright M. D., Munera D., Robinson K. S., Lee S. F., Frankel G., Hartland E. L. ( 2011). Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 80:1420–1438 [View Article][PubMed]
    [Google Scholar]
  263. Woodward M. J., Sojka M., Sprigings K. A., Humphrey T. J. ( 2000). The role of SEF14 and SEF17 fimbriae in the adherence of Salmonella enterica serotype Enteritidis to inanimate surfaces. J Med Microbiol 49:481–487[PubMed]
    [Google Scholar]
  264. World Health Organization( 2008). http://www.who.int/wer/2008/wer8306/en/
  265. Wu Y. L., Hinenoya A., Taguchi T., Nagita A., Shima K., Tsukamoto T., Sugimoto N., Asakura M., Yamasaki S. ( 2010). Distribution of virulence genes related to adhesins and toxins in shiga toxin-producing Escherichia coli strains isolated from healthy cattle and diarrheal patients in Japan. J Vet Med Sci 72:589–597 [View Article][PubMed]
    [Google Scholar]
  266. Xicohtencatl-Cortes J., Monteiro-Neto V., Ledesma M. A., Jordan D. M., Francetic O., Kaper J. B., Puente J. L., Girón J. A. ( 2007). Intestinal adherence associated with type IV pili of enterohemorrhagic Escherichia coli O157:H7. J Clin Invest 117:3519–3529 [View Article][PubMed]
    [Google Scholar]
  267. Xicohtencatl-Cortes J., Sánchez Chacón E., Saldaña Z., Freer E., Girón J. A. ( 2009a). Interaction of Escherichia coli O157:H7 with leafy green produce. J Food Prot 72:1531–1537[PubMed]
    [Google Scholar]
  268. Xicohtencatl-Cortes J., Monteiro-Neto V., Saldaña Z., Ledesma M. A., Puente J. L., Girón J. A. ( 2009b). The type 4 pili of enterohemorrhagic Escherichia coli O157:H7 are multipurpose structures with pathogenic attributes. J Bacteriol 191:411–421 [View Article][PubMed]
    [Google Scholar]
  269. Yeom J., Lee Y., Park W. ( 2012). Effects of non-ionic solute stresses on biofilm formation and lipopolysaccharide production in Escherichia coli O157:H7. Res Microbiol 163:258–267 [View Article][PubMed]
    [Google Scholar]
  270. Zameer F., Gopal S., Krohne G., Kreft J. ( 2010). Development of a biofilm model for Listeria monocytogenes EGD-e. World J Microbiol Biotechnol 26:1143–1147 [View Article]
    [Google Scholar]
  271. Zhang L. H., Jacobsson K., Vasi J., Lindberg M., Frykberg L. ( 1998). A second IgG-binding protein in Staphylococcus aureus . Microbiology 144:985–991 [View Article][PubMed]
    [Google Scholar]
  272. Zhang W., Nadirk J., Kossow A., Bielaszewska M., Leopold S. R., Witten A., Fruth A., Karch H., Ammon A., Mellmann A. ( 2014). Phylogeny and phenotypes of clinical and environmental Shiga toxin-producing Escherichia coli O174. Environ Microbiol 16:963–976 [View Article][PubMed]
    [Google Scholar]
  273. Zhu C. H., Meng X., Duan X. L., Tao Z. Y., Gong J. S., Hou H. Y., Zhu G. Q. ( 2013). SEF14 fimbriae from Salmonella enteritidis play a role in pathogenitic to cell model in vitro and host in vivo . Microb Pathog 64:18–22 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075887-0
Loading
/content/journal/micro/10.1099/mic.0.075887-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error