1887

Abstract

We studied the molecular mechanism of resistance in extended-spectrum β-lactamase (ESBL)-producing isolated from a neonatal intensive care unit (NICU) of one of the hospitals in North India. A total of 3000 clinical samples were collected from a NICU (January 2009 to February 2011), of which 523 strains were positive and 262 of them were ESBL-producing strains. All of the ESBL-producing clinical isolates were susceptible to carbapenems. However, the majority of the clinical isolates (30–96 %) were resistant to a wide range of antibiotics including antibiotic/inhibitor combinations. The MIC values confirmed that these isolates were highly resistant to cephalosporins and aztreonam. In the 262 ESBL-producing isolates, 15 different enterobacterial repetitive intergenic consensus (ERIC)-PCR-typed phylogenetic groups were identified and reconfirmed by PFGE. Characterization of plasmids from each representative member of these phylogenetic groups revealed the presence of three plasmids of different sizes. Conjugation experiments confirmed the presence of different resistance markers only on the 154 kb plasmid. PCR amplification and sequence analysis revealed that , , , and were the predominant resistance markers. Plasmid-replicon typing showed that IncI1-Iγ and IncFIA-FIB types are the most prevalent. This study shows the co-existence of multiple ESBL-encoding genes and their polyclonal dissemination among clinical isolates in the NICU of a North Indian hospital.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075762-0
2014-06-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/6/1153.html?itemId=/content/journal/micro/10.1099/mic.0.075762-0&mimeType=html&fmt=ahah

References

  1. Aritua V., Nanyonjo A., Kumakech F., Tushemereirwe W.. ( 2007;). Rep-PCR reveals a high genetic homogeneity among Ugandan isolates of Xanthomonas campestris pv musacearum. . Afr J Biotechnol 6:, 179–183.
    [Google Scholar]
  2. Bagattini M., Crivaro V., Di Popolo A., Gentile F., Scarcella A., Triassi M., Villari P., Zarrilli R.. ( 2006;). Molecular epidemiology of extended-spectrum β-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. . J Antimicrob Chemother 57:, 979–982. [CrossRef][PubMed]
    [Google Scholar]
  3. Carattoli A., Bertini A., Villa L., Falbo V., Hopkins K. L., Threlfall E. J.. ( 2005;). Identification of plasmids by PCR-based replicon typing. . J Microbiol Methods 63:, 219–228. [CrossRef][PubMed]
    [Google Scholar]
  4. CLSI ( 2011;). Performance Standards for Antimicrobial Susceptibility Testing; M100-S21. . Wayne, PA:: Clinical and Laboratory Standards Institute;.
  5. Courvalin P., Goldstein F., Philippon A., Sirot J.. (editors) ( 1985;). L’Antibiogramme. Paris:: MPC-Vidéom;.
    [Google Scholar]
  6. Davis M. A., Hancock D. D., Besser T. E., Call D. R.. ( 2003;). Evaluation of pulsed-field gel electrophoresis as a tool for determining the degree of genetic relatedness between strains of Escherichia coli O157 : H7. . J Clin Microbiol 41:, 1843–1849. [CrossRef][PubMed]
    [Google Scholar]
  7. Doi Y., Yokoyama K., Yamane K., Wachino J., Shibata N., Yagi T., Shibayama K., Kato H., Arakawa Y.. ( 2004;). Plasmid-mediated 16S rRNA methylase in Serratia marcescens conferring high-level resistance to aminoglycosides. . Antimicrob Agents Chemother 48:, 491–496. [CrossRef][PubMed]
    [Google Scholar]
  8. Elhani D., Bakir L., Aouni M., Passet V., Arlet G., Brisse S., Weill F.-X.. ( 2010;). Molecular epidemiology of extended-spectrum β-lactamase-producing Klebsiella pneumoniae strains in a university hospital in Tunis, Tunisia, 1999–2005. . Clin Microbiol Infect 16:, 157–164. [CrossRef][PubMed]
    [Google Scholar]
  9. Franklin C., Liolios L., Peleg A. Y.. ( 2006;). Phenotypic detection of carbapenem-susceptible metallo-β-lactamase-producing gram-negative bacilli in the clinical laboratory. . J Clin Microbiol 44:, 3139–3144. [CrossRef][PubMed]
    [Google Scholar]
  10. Galimand M., Courvalin P., Lambert T.. ( 2003;). Plasmid-mediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. . Antimicrob Agents Chemother 47:, 2565–2571. [CrossRef][PubMed]
    [Google Scholar]
  11. Gröbner S., Linke D., Schütz W., Fladerer C., Madlung J., Autenrieth I. B., Witte W., Pfeifer Y.. ( 2009;). Emergence of carbapenem-non-susceptible extended-spectrum β-lactamase-producing Klebsiella pneumoniae isolates at the university hospital of Tübingen, Germany. . J Med Microbiol 58:, 912–922. [CrossRef][PubMed]
    [Google Scholar]
  12. Guerra B., Soto S., Cal S., Mendoza M. C.. ( 2000;). Antimicrobial resistance and spread of class 1 integrons among Salmonella serotypes. . Antimicrob Agents Chemother 44:, 2166–2169. [CrossRef][PubMed]
    [Google Scholar]
  13. Guessennd N., Bremont S., Gbonon V., Kacou-Ndouba A., Ekaza E., Lambert T., Dosso M., Courvalin P.. ( 2008;). [Qnr-type quinolone resistance in extended-spectrum β-lactamase producing enterobacteria in Abidjan, Ivory Coast]. . Pathol Biol (Paris) 56:, 439–446 (in French). [CrossRef][PubMed]
    [Google Scholar]
  14. Haque S. F., Ali S.-Z., Tp M., Khan A. U.. ( 2012;). Prevalence of plasmid mediated blaTEM-1 and blaCTX-M-15 type extended spectrum β-lactamases in patients with sepsis. . Asian Pac J Trop Med 5:, 98–102. [CrossRef][PubMed]
    [Google Scholar]
  15. Hawkey P. M., Jones A. M.. ( 2009;). The changing epidemiology of resistance. . J Antimicrob Chemother 64: (Suppl. 1), i3–i10. [CrossRef][PubMed]
    [Google Scholar]
  16. Hussain A., Ewers C., Nandanwar N., Guenther S., Jadhav S., Wieler L. H., Ahmed N.. ( 2012;). Multiresistant uropathogenic Escherichia coli from a region in India where urinary tract infections are endemic: genotypic and phenotypic characteristics of sequence type 131 isolates of the CTX-M-15 extended-spectrum-β-lactamase-producing lineage. . Antimicrob Agents Chemother 56:, 6358–6365. [CrossRef][PubMed]
    [Google Scholar]
  17. Kieser T.. ( 1984;). Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. . Plasmid 12:, 19–36. [CrossRef][PubMed]
    [Google Scholar]
  18. Kristo I., Pitiriga V., Poulou A., Zarkotou O., Kimouli M., Pournaras S., Tsakris A.. ( 2013;). Susceptibility patterns to extended-spectrum cephalosporins among Enterobacteriaceae harbouring extended-spectrum β-lactamases using the updated Clinical and Laboratory Standards Institute interpretive criteria. . Int J Antimicrob Agents 41:, 383–387. [CrossRef][PubMed]
    [Google Scholar]
  19. Lautenbach E., Patel J. B., Bilker W. B., Edelstein P. H., Fishman N. O.. ( 2001;). Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. . Clin Infect Dis 32:, 1162–1171. [CrossRef][PubMed]
    [Google Scholar]
  20. Liu W., Chen L., Li H., Duan H., Zhang Y., Liang X., Li X., Zou M., Xu L., Hawkey P. M.. ( 2009;). Novel CTX-M β-lactamase genotype distribution and spread into multiple species of Enterobacteriaceae in Changsha, Southern China. . J Antimicrob Chemother 63:, 895–900. [CrossRef][PubMed]
    [Google Scholar]
  21. Meatherall B. L., Gregson D., Ross T., Pitout J. D. D., Laupland K. B.. ( 2009;). Incidence, risk factors, and outcomes of Klebsiella pneumoniae bacteremia. . Am J Med 122:, 866–873. [CrossRef][PubMed]
    [Google Scholar]
  22. Mohamudha Parveen R., Harish B. N., Parija S. C.. ( 2010;). Ampc β lactamases among gram negative clinical isolates from a tertiary hospital, South India. . Braz J Microbiol 41:, 596–602. [CrossRef][PubMed]
    [Google Scholar]
  23. Mshana S. E., Imirzalioglu C., Hossain H., Hain T., Domann E., Chakraborty T.. ( 2009;). Conjugative IncFI plasmids carrying CTX-M-15 among Escherichia coli ESBL producing isolates at a University hospital in Germany. . BMC Infect Dis 9:, 97. [CrossRef][PubMed]
    [Google Scholar]
  24. Nordmann P., Poirel L., Carrër A., Toleman M. A., Walsh T. R.. ( 2011;). How to detect NDM-1 producers. . J Clin Microbiol 49:, 718–721. [CrossRef][PubMed]
    [Google Scholar]
  25. Pagani L., Dell’Amico E., Migliavacca R., D’Andrea M. M., Giacobone E., Amicosante G., Romero E., Rossolini G. M.. ( 2003;). Multiple CTX-M-type extended-spectrum β-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. . J Clin Microbiol 41:, 4264–4269. [CrossRef][PubMed]
    [Google Scholar]
  26. Park Y. J., Lee S., Yu J. K., Woo G. J., Lee K., Arakawa Y.. ( 2006;). Co-production of 16S rRNA methylases and extended-spectrum β-lactamases in AmpC-producing Enterobacter cloacae, Citrobacter freundii and Serratia marcescens in Korea. . J Antimicrob Chemother 58:, 907–908. [CrossRef][PubMed]
    [Google Scholar]
  27. Parveen R. M., Khan M. A., Menezes G. A., Harish B. N., Parija S. C., Hays J. P.. ( 2011;). Extended-spectrum β-lactamase producing Klebsiella pneumoniae from blood cultures in Puducherry, India. . Indian J Med Res 134:, 392–395.[PubMed]
    [Google Scholar]
  28. Poirel L., Revathi G., Bernabeu S., Nordmann P.. ( 2011;). Detection of NDM-1-producing Klebsiella pneumoniae in Kenya. . Antimicrob Agents Chemother 55:, 934–936. [CrossRef][PubMed]
    [Google Scholar]
  29. Romero E. D., Padilla T. P., Hernández A. H., Grande R. P., Vázquez M. F., García I. G., García-Rodríguez J. A., Muñoz Bellido J. L.. ( 2007;). Prevalence of clinical isolates of Escherichia coli and Klebsiella spp. producing multiple extended-spectrum β-lactamases. . Diagn Microbiol Infect Dis 59:, 433–437. [CrossRef][PubMed]
    [Google Scholar]
  30. Sadeghifard N., Ghafourian S., Sekawi Z., Neela V. K., Hematian A., Pakzad I., Galehdari E. A., Mohebi R.. ( 2011;). Extended spectrum beta-lactamases among hospitalized patients in surgery wards, Ilam, Iran. . J Microbial Biochem Technol 3:, 18–20. [CrossRef]
    [Google Scholar]
  31. Shakil S., Ali S. Z., Akram M., Ali S. M., Khan A. U.. ( 2010;). Risk factors for extended-spectrum β-lactamase producing Escherichia coli and Klebsiella pneumoniae acquisition in a neonatal intensive care unit. . J Trop Pediatr 56:, 90–96. [CrossRef][PubMed]
    [Google Scholar]
  32. Sikarwar A. S., Batra H. V.. ( 2011;). Prevalence of antimicrobial drug resistance of Klebsiella pneumoniae in India. . Int J Biosci Biochem Bioinform 1:, 211–215.
    [Google Scholar]
  33. Versalovic J., Koeuth T., Lupski J. R.. ( 1991;). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. . Nucleic Acids Res 19:, 6823–6831. [CrossRef][PubMed]
    [Google Scholar]
  34. Wang M., Tran J. H., Jacoby G. A., Zhang Y., Wang F., Hooper D. C.. ( 2003;). Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. . Antimicrob Agents Chemother 47:, 2242–2248. [CrossRef][PubMed]
    [Google Scholar]
  35. Xiong Z., Zhu D., Wang F., Zhang Y., Okamoto R., Inoue M.. ( 2004;). A Klebsiella pneumoniae producing three kinds of class A β-lactamases encoded by one single plasmid isolated from a patient in Huashan Hospital, Shanghai, China. . Int J Antimicrob Agents 23:, 262–267. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075762-0
Loading
/content/journal/micro/10.1099/mic.0.075762-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error