1887

Abstract

encounters an array of sugar moieties within the oral cavity due to a varied human diet. One such sugar is β--glucose 1-phosphate (βDG1P), which must be converted to glucose 6-phosphate (G6P) before further metabolism to lactic acid. The conversion of βDG1P to G6P is mediated by β-phosphoglucomutase, which has not been previously observed in any oral streptococci, but has been extensively characterized and the gene designated in . An orthologue was identified in , SMU.1747c, and deletion of the gene resulted in the inability of the deletion strain to convert βDG1P to G6P, indicating that SMU.1747c is a β-phosphoglucomutase and should be designated . In this study, we sought to characterize how deletion of affected known virulence factors of , specifically acid tolerance. The Δ strain showed a decreased ability to survive acid challenge. Additionally, the strain lacking β-phosphoglucomutase had a diminished glycolytic profile compared with the parental strain. Deletion of had a negative impact on the virulence of in the (greater wax worm) animal model. Our results indicate that plays a role at the juncture of carbohydrate metabolism and virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075754-0
2014-04-01
2019-12-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/818.html?itemId=/content/journal/micro/10.1099/mic.0.075754-0&mimeType=html&fmt=ahah

References

  1. Abranches J. , Candella M. M. , Wen Z. T. , Baker H. V. , Burne R. A. . ( 2006; ). Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans . . J Bacteriol 188:, 3748–3756. [CrossRef] [PubMed]
    [Google Scholar]
  2. Abranches J. , Nascimento M. M. , Zeng L. , Browngardt C. M. , Wen Z. T. , Rivera M. F. , Burne R. A. . ( 2008; ). CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans . . J Bacteriol 190:, 2340–2349. [CrossRef] [PubMed]
    [Google Scholar]
  3. Abranches J. , Miller J. H. , Martinez A. R. , Simpson-Haidaris P. J. , Burne R. A. , Lemos J. A. . ( 2011; ). The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. . Infect Immun 79:, 2277–2284. [CrossRef] [PubMed]
    [Google Scholar]
  4. Ajdic D. , Chen Z. . ( 2013; ). A novel phosphotransferase system of Streptococcus mutans is responsible for transport of carbohydrates with α-1,3 linkage. . Mol Oral Microbiol 28:, 114–128. [CrossRef] [PubMed]
    [Google Scholar]
  5. Ajdić D. , Pham V. T. . ( 2007; ). Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays. . J Bacteriol 189:, 5049–5059. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ajdić D. , McShan W. M. , McLaughlin R. E. , Savić G. , Chang J. , Carson M. B. , Primeaux C. , Tian R. , Kenton S. . & other authors ( 2002; ). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. . Proc Natl Acad Sci U S A 99:, 14434–14439. [CrossRef] [PubMed]
    [Google Scholar]
  7. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef] [PubMed]
    [Google Scholar]
  8. Andersson U. , Levander F. , Rådström P. . ( 2001; ). Trehalose-6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis . . J Biol Chem 276:, 42707–42713. [CrossRef] [PubMed]
    [Google Scholar]
  9. Baehni P. C. , Guggenheim B. . ( 1996; ). Potential of diagnostic microbiology for treatment and prognosis of dental caries and periodontal diseases. . Crit Rev Oral Biol Med 7:, 259–277. [CrossRef] [PubMed]
    [Google Scholar]
  10. Belli W. A. , Marquis R. E. . ( 1991; ). Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. . Appl Environ Microbiol 57:, 1134–1138.[PubMed]
    [Google Scholar]
  11. Belli W. A. , Marquis R. E. . ( 1994; ). Catabolite modification of acid tolerance of Streptococcus mutans GS-5. . Oral Microbiol Immunol 9:, 29–34. [CrossRef] [PubMed]
    [Google Scholar]
  12. Bender G. R. , Thibodeau E. A. , Marquis R. E. . ( 1985; ). Reduction of acidurance of streptococcal growth and glycolysis by fluoride and gramicidin. . J Dent Res 64:, 90–95. [CrossRef] [PubMed]
    [Google Scholar]
  13. Bender G. R. , Sutton S. V. , Marquis R. E. . ( 1986; ). Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. . Infect Immun 53:, 331–338.[PubMed]
    [Google Scholar]
  14. Berman K. S. , Gibbons R. J. . ( 1966; ). Iodophilic polysaccharide synthesis by human and rodent oral bacteria. . Arch Oral Biol 11:, 533–542. [CrossRef] [PubMed]
    [Google Scholar]
  15. Bialostosky K. , Wright J. D. , Kennedy-Stephenson J. , McDowell M. , Johnson C. L. . ( 2002; ). Dietary intake of macronutrients, micronutrients, and other dietary constituents: United States 1988–94. . Vital Health Stat 11 (245):, 1–158.[PubMed]
    [Google Scholar]
  16. Biswas S. , Biswas I. . ( 2005; ). Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans . . Infect Immun 73:, 6923–6934. [CrossRef] [PubMed]
    [Google Scholar]
  17. Bligh E. G. , Dyer W. J. . ( 1959; ). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef] [PubMed]
    [Google Scholar]
  18. Bowen W. H. , Koo H. . ( 2011; ). Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. . Caries Res 45:, 69–86. [CrossRef] [PubMed]
    [Google Scholar]
  19. Bradford M. M. . ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. . Anal Biochem 72:, 248–254. [CrossRef] [PubMed]
    [Google Scholar]
  20. Brennan M. , Thomas D. Y. , Whiteway M. , Kavanagh K. . ( 2002; ). Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. . FEMS Immunol Med Microbiol 34:, 153–157. [CrossRef] [PubMed]
    [Google Scholar]
  21. Dashper S. G. , Reynolds E. C. . ( 1992; ). pH regulation by Streptococcus mutans . . J Dent Res 71:, 1159–1165. [CrossRef] [PubMed]
    [Google Scholar]
  22. Derr A. M. , Faustoferri R. C. , Betzenhauser M. J. , Gonzalez K. , Marquis R. E. , Quivey R. G. Jr . ( 2012; ). Mutation of the NADH oxidase gene (nox) reveals an overlap of the oxygen- and acid-mediated stress responses in Streptococcus mutans . . Appl Environ Microbiol 78:, 1215–1227. [CrossRef] [PubMed]
    [Google Scholar]
  23. Dye B. A. , Thornton-Evans G. . ( 2010; ). Trends in oral health by poverty status as measured by Healthy People 2010 objectives. . Public Health Rep 125:, 817–830.[PubMed]
    [Google Scholar]
  24. Dye B. A. , Tan S. , Smith V. , Lewis B. G. , Barker L. K. , Thornton-Evans G. , Eke P. I. , Beltrán-Aguilar E. D. , Horowitz A. M. , Li C. H. . ( 2007; ). Trends in oral health status: United States, 1988–1994 and 1999–2004. . Vital Health Stat 11: (248), 1–92.[PubMed]
    [Google Scholar]
  25. Evans B. A. , Rozen D. E. . ( 2012; ). A Streptococcus pneumoniae infection model in larvae of the wax moth Galleria mellonella . . Eur J Clin Microbiol Infect Dis 31:, 2653–2660. [CrossRef] [PubMed]
    [Google Scholar]
  26. Fozo E. M. , Quivey R. G. Jr . ( 2004a; ). Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. . Appl Environ Microbiol 70:, 929–936. [CrossRef] [PubMed]
    [Google Scholar]
  27. Fozo E. M. , Quivey R. G. Jr . ( 2004b; ). The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. . J Bacteriol 186:, 4152–4158. [CrossRef] [PubMed]
    [Google Scholar]
  28. Fozo E. M. , Kajfasz J. K. , Quivey R. G. Jr . ( 2004; ). Low pH-induced membrane fatty acid alterations in oral bacteria. . FEMS Microbiol Lett 238:, 291–295. [CrossRef] [PubMed]
    [Google Scholar]
  29. Fozo E. M. , Scott-Anne K. , Koo H. , Quivey R. G. Jr . ( 2007; ). Role of unsaturated fatty acid biosynthesis in virulence of Streptococcus mutans . . Infect Immun 75:, 1537–1539. [CrossRef] [PubMed]
    [Google Scholar]
  30. Gonzalez K. , Faustoferri R. C. , Quivey R. G. Jr . ( 2012; ). Role of DNA base excision repair in the mutability and virulence of Streptococcus mutans . . Mol Microbiol 85:, 361–377. [CrossRef] [PubMed]
    [Google Scholar]
  31. Gross E. L. , Beall C. J. , Kutsch S. R. , Firestone N. D. , Leys E. J. , Griffen A. L. . ( 2012; ). Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. . PLoS ONE 7:, e47722. [CrossRef] [PubMed]
    [Google Scholar]
  32. Hanahan D. . ( 1983; ). Studies on transformation of Escherichia coli with plasmids. . J Mol Biol 166:, 557–580.[PubMed] [CrossRef]
    [Google Scholar]
  33. Harris G. S. , Michalek S. M. , Curtiss R. III . ( 1992; ). Cloning of a locus involved in Streptococcus mutans intracellular polysaccharide accumulation and virulence testing of an intracellular polysaccharide-deficient mutant. . Infect Immun 60:, 3175–3185.[PubMed]
    [Google Scholar]
  34. Huang M. , Meng L. , Fan M. , Hu P. , Bian Z. . ( 2008; ). Effect of biofilm formation on virulence factor secretion via the general secretory pathway in Streptococcus mutans . . Arch Oral Biol 53:, 1179–1185. [CrossRef] [PubMed]
    [Google Scholar]
  35. Hüwel S. , Haalck L. , Conrath N. , Spener F. . ( 1997; ). Maltose phosphorylase from Lactobacillus brevis: purification, characterization, and application in a biosensor for ortho-phosphate. . Enzyme Microb Technol 21:, 413–420. [CrossRef] [PubMed]
    [Google Scholar]
  36. Jensen M. E. , Schachtele C. F. . ( 1983; ). Plaque pH measurements by different methods on the buccal and approximal surfaces of human teeth after a sucrose rinse. . J Dent Res 62:, 1058–1061. [CrossRef] [PubMed]
    [Google Scholar]
  37. Jensen M. E. , Polansky P. J. , Schachtele C. F. . ( 1982; ). Plaque sampling and telemetry for monitoring acid production on human buccal tooth surfaces. . Arch Oral Biol 27:, 21–31. [CrossRef] [PubMed]
    [Google Scholar]
  38. Kajfasz J. K. , Rivera-Ramos I. , Abranches J. , Martinez A. R. , Rosalen P. L. , Derr A. M. , Quivey R. G. , Lemos J. A. . ( 2010; ). Two Spx proteins modulate stress tolerance, survival, and virulence in Streptococcus mutans . . J Bacteriol 192:, 2546–2556. [CrossRef] [PubMed]
    [Google Scholar]
  39. Klein M. I. , Scott-Anne K. M. , Gregoire S. , Rosalen P. L. , Koo H. . ( 2012a; ). Molecular approaches for viable bacterial population and transcriptional analyses in a rodent model of dental caries. . Mol Oral Microbiol 27:, 350–361. [CrossRef] [PubMed]
    [Google Scholar]
  40. Klein M. I. , Xiao J. , Lu B. , Delahunty C. M. , Yates J. R. III , Koo H. . ( 2012b; ). Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics. . PLoS ONE 7:, e45795. [CrossRef] [PubMed]
    [Google Scholar]
  41. Kuhnert W. L. , Zheng G. , Faustoferri R. C. , Quivey R. G. Jr . ( 2004; ). The F-ATPase operon promoter of Streptococcus mutans is transcriptionally regulated in response to external pH. . J Bacteriol 186:, 8524–8528. [CrossRef] [PubMed]
    [Google Scholar]
  42. Lemos J. A. , Quivey R. G. Jr , Koo H. , Abranches J. . ( 2013; ). Streptococcus mutans: a new Gram-positive paradigm?. Microbiology 159:, 436–445. [CrossRef] [PubMed]
    [Google Scholar]
  43. Levander F. , Rådström P. . ( 2001; ). Requirement for phosphoglucomutase in exopolysaccharide biosynthesis in glucose- and lactose-utilizing Streptococcus thermophilus . . Appl Environ Microbiol 67:, 2734–2738. [CrossRef] [PubMed]
    [Google Scholar]
  44. Levander F. , Andersson U. , Rådström P. . ( 2001; ). Physiological role of β-phosphoglucomutase in Lactococcus lactis . . Appl Environ Microbiol 67:, 4546–4553. [CrossRef] [PubMed]
    [Google Scholar]
  45. Loesche W. J. . ( 1986; ). Role of Streptococcus mutans in human dental decay. . Microbiol Rev 50:, 353–380.[PubMed]
    [Google Scholar]
  46. MacGilvray M. E. , Lapek J. D. Jr , Friedman A. E. , Quivey R. G. Jr . ( 2012; ). Cardiolipin biosynthesis in Streptococcus mutans is regulated in response to external pH. . Microbiology 158:, 2133–2143. [CrossRef] [PubMed]
    [Google Scholar]
  47. Martin S. A. , Russell J. B. . ( 1987; ). Transport and phosphorylation of disaccharides by the ruminal bacterium Streptococcus bovis . . Appl Environ Microbiol 53:, 2388–2393.[PubMed]
    [Google Scholar]
  48. Matsui R. , Cvitkovitch D. . ( 2010; ). Acid tolerance mechanisms utilized by Streptococcus mutans . . Future Microbiol 5:, 403–417. [CrossRef] [PubMed]
    [Google Scholar]
  49. Murchison H. H. , Barrett J. F. , Cardineau G. A. , Curtiss R. III . ( 1986; ). Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629) DNAs. . Infect Immun 54:, 273–282.[PubMed]
    [Google Scholar]
  50. Nihira T. , Nakai H. , Chiku K. , Kitaoka M. . ( 2012; ). Discovery of nigerose phosphorylase from Clostridium phytofermentans . . Appl Microbiol Biotechnol 93:, 1513–1522. [CrossRef] [PubMed]
    [Google Scholar]
  51. Nyvad B. , Crielaard W. , Mira A. , Takahashi N. , Beighton D. . ( 2013; ). Dental caries from a molecular microbiological perspective. . Caries Res 47:, 89–102. [CrossRef] [PubMed]
    [Google Scholar]
  52. Qian N. , Stanley G. A. , Hahn-Hägerdal B. , Rådström P. . ( 1994; ). Purification and characterization of two phosphoglucomutases from Lactococcus lactis subsp. lactis and their regulation in maltose- and glucose-utilizing cells. . J Bacteriol 176:, 5304–5311.[PubMed]
    [Google Scholar]
  53. Quivey R. G. Jr , Faustoferri R. C. , Clancy K. A. , Marquis R. E. . ( 1995; ). Acid adaptation in Streptococcus mutans UA159 alleviates sensitization to environmental stress due to RecA deficiency. . FEMS Microbiol Lett 126:, 257–262. [CrossRef] [PubMed]
    [Google Scholar]
  54. Russell R. R. , Aduse-Opoku J. , Sutcliffe I. C. , Tao L. , Ferretti J. J. . ( 1992; ). A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. . J Biol Chem 267:, 4631–4637.[PubMed]
    [Google Scholar]
  55. Santiago B. , MacGilvray M. , Faustoferri R. C. , Quivey R. G. Jr . ( 2012; ). The branched-chain amino acid aminotransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans . . J Bacteriol 194:, 2010–2019. [CrossRef] [PubMed]
    [Google Scholar]
  56. Selinger Z. , Schramm M. . ( 1961; ). Enzymatic synthesis of the maltose analogues, glucosyl glucosamine, glucosyl N-acetyl-glucosamine and glucosyl 2-deoxyglucose by an extract of Neisseria perflava . . J Biol Chem 236:, 2183–2185.[PubMed]
    [Google Scholar]
  57. Sheng J. , Marquis R. E. . ( 2006; ). Enhanced acid resistance of oral streptococci at lethal pH values associated with acid-tolerant catabolism and with ATP synthase activity. . FEMS Microbiol Lett 262:, 93–98. [CrossRef] [PubMed]
    [Google Scholar]
  58. Sjöberg A. , Hahn-Hägerdal B. . ( 1989; ). β-Glucose-1-phosphate, a possible mediator for polysaccharide formation in maltose-assimilating Lactococcus lactis . . Appl Environ Microbiol 55:, 1549–1554.[PubMed]
    [Google Scholar]
  59. Smith E. G. , Spatafora G. A. . ( 2012; ). Gene regulation in S. mutans: complex control in a complex environment. . J Dent Res 91:, 133–141. [CrossRef] [PubMed]
    [Google Scholar]
  60. Smith P. K. , Krohn R. I. , Hermanson G. T. , Mallia A. K. , Gartner F. H. , Provenzano M. D. , Fujimoto E. K. , Goeke N. M. , Olson B. J. , Klenk D. C. . ( 1985; ). Measurement of protein using bicinchoninic acid. . Anal Biochem 150:, 76–85. [CrossRef] [PubMed]
    [Google Scholar]
  61. Spatafora G. , Rohrer K. , Barnard D. , Michalek S. . ( 1995; ). A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo . . Infect Immun 63:, 2556–2563.[PubMed]
    [Google Scholar]
  62. Sturr M. G. , Marquis R. E. . ( 1990; ). Inhibition of proton-translocating ATPases of Streptococcus mutans and Lactobacillus casei by fluoride and aluminum. . Arch Microbiol 155:, 22–27. [CrossRef] [PubMed]
    [Google Scholar]
  63. Takahashi N. , Nyvad B. . ( 2011; ). The role of bacteria in the caries process: ecological perspectives. . J Dent Res 90:, 294–303. [CrossRef] [PubMed]
    [Google Scholar]
  64. Vilmos P. , Kurucz E. . ( 1998; ). Insect immunity: evolutionary roots of the mammalian innate immune system. . Immunol Lett 62:, 59–66. [CrossRef] [PubMed]
    [Google Scholar]
  65. Webb A. J. , Homer K. A. , Hosie A. H. . ( 2007; ). A phosphoenolpyruvate-dependent phosphotransferase system is the principal maltose transporter in Streptococcus mutans . . J Bacteriol 189:, 3322–3327. [CrossRef] [PubMed]
    [Google Scholar]
  66. Webb A. J. , Homer K. A. , Hosie A. H. . ( 2008; ). Two closely related ABC transporters in Streptococcus mutans are involved in disaccharide and/or oligosaccharide uptake. . J Bacteriol 190:, 168–178. [CrossRef] [PubMed]
    [Google Scholar]
  67. Whitmore S. E. , Lamont R. J. . ( 2011; ). The pathogenic persona of community-associated oral streptococci. . Mol Microbiol 81:, 305–314. [CrossRef] [PubMed]
    [Google Scholar]
  68. Xiao J. , Klein M. I. , Falsetta M. L. , Lu B. , Delahunty C. M. , Yates J. R. III , Heydorn A. , Koo H. . ( 2012; ). The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. . PLoS Pathog 8:, e1002623. [CrossRef] [PubMed]
    [Google Scholar]
  69. Zeng L. , Xue P. , Stanhope M. J. , Burne R. A. . ( 2013; ). A galactose-specific sugar: phosphotransferase permease is prevalent in the non-core genome of Streptococcus mutans . . Mol Oral Microbiol 28:, 292–301. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075754-0
Loading
/content/journal/micro/10.1099/mic.0.075754-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error