1887

Abstract

encounters an array of sugar moieties within the oral cavity due to a varied human diet. One such sugar is β--glucose 1-phosphate (βDG1P), which must be converted to glucose 6-phosphate (G6P) before further metabolism to lactic acid. The conversion of βDG1P to G6P is mediated by β-phosphoglucomutase, which has not been previously observed in any oral streptococci, but has been extensively characterized and the gene designated in . An orthologue was identified in , SMU.1747c, and deletion of the gene resulted in the inability of the deletion strain to convert βDG1P to G6P, indicating that SMU.1747c is a β-phosphoglucomutase and should be designated . In this study, we sought to characterize how deletion of affected known virulence factors of , specifically acid tolerance. The Δ strain showed a decreased ability to survive acid challenge. Additionally, the strain lacking β-phosphoglucomutase had a diminished glycolytic profile compared with the parental strain. Deletion of had a negative impact on the virulence of in the (greater wax worm) animal model. Our results indicate that plays a role at the juncture of carbohydrate metabolism and virulence.

Funding
This study was supported by the:
  • Training Program in Oral Sciences (Award NIH/NIDCR DE- 17157, NIH/NIDCR DE-17425, NIH/NIDCR DE-13683, T90-DE021985 and NIH/NIDCR T32 DE-07165)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075754-0
2014-04-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/818.html?itemId=/content/journal/micro/10.1099/mic.0.075754-0&mimeType=html&fmt=ahah

References

  1. Abranches J., Candella M. M., Wen Z. T., Baker H. V., Burne R. A. ( 2006). Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans . J Bacteriol 188:3748–3756 [View Article][PubMed]
    [Google Scholar]
  2. Abranches J., Nascimento M. M., Zeng L., Browngardt C. M., Wen Z. T., Rivera M. F., Burne R. A. ( 2008). CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans . J Bacteriol 190:2340–2349 [View Article][PubMed]
    [Google Scholar]
  3. Abranches J., Miller J. H., Martinez A. R., Simpson-Haidaris P. J., Burne R. A., Lemos J. A. ( 2011). The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun 79:2277–2284 [View Article][PubMed]
    [Google Scholar]
  4. Ajdic D., Chen Z. ( 2013). A novel phosphotransferase system of Streptococcus mutans is responsible for transport of carbohydrates with α-1,3 linkage. Mol Oral Microbiol 28:114–128 [View Article][PubMed]
    [Google Scholar]
  5. Ajdić D., Pham V. T. ( 2007). Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays. J Bacteriol 189:5049–5059 [View Article][PubMed]
    [Google Scholar]
  6. Ajdić D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S. & other authors ( 2002). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99:14434–14439 [View Article][PubMed]
    [Google Scholar]
  7. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  8. Andersson U., Levander F., Rådström P. ( 2001). Trehalose-6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis . J Biol Chem 276:42707–42713 [View Article][PubMed]
    [Google Scholar]
  9. Baehni P. C., Guggenheim B. ( 1996). Potential of diagnostic microbiology for treatment and prognosis of dental caries and periodontal diseases. Crit Rev Oral Biol Med 7:259–277 [View Article][PubMed]
    [Google Scholar]
  10. Belli W. A., Marquis R. E. ( 1991). Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl Environ Microbiol 57:1134–1138[PubMed]
    [Google Scholar]
  11. Belli W. A., Marquis R. E. ( 1994). Catabolite modification of acid tolerance of Streptococcus mutans GS-5. Oral Microbiol Immunol 9:29–34 [View Article][PubMed]
    [Google Scholar]
  12. Bender G. R., Thibodeau E. A., Marquis R. E. ( 1985). Reduction of acidurance of streptococcal growth and glycolysis by fluoride and gramicidin. J Dent Res 64:90–95 [View Article][PubMed]
    [Google Scholar]
  13. Bender G. R., Sutton S. V., Marquis R. E. ( 1986). Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun 53:331–338[PubMed]
    [Google Scholar]
  14. Berman K. S., Gibbons R. J. ( 1966). Iodophilic polysaccharide synthesis by human and rodent oral bacteria. Arch Oral Biol 11:533–542 [View Article][PubMed]
    [Google Scholar]
  15. Bialostosky K., Wright J. D., Kennedy-Stephenson J., McDowell M., Johnson C. L. ( 2002). Dietary intake of macronutrients, micronutrients, and other dietary constituents: United States 1988–94. Vital Health Stat 11 (245):1–158[PubMed]
    [Google Scholar]
  16. Biswas S., Biswas I. ( 2005). Role of HtrA in surface protein expression and biofilm formation by Streptococcus mutans . Infect Immun 73:6923–6934 [View Article][PubMed]
    [Google Scholar]
  17. Bligh E. G., Dyer W. J. ( 1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [View Article][PubMed]
    [Google Scholar]
  18. Bowen W. H., Koo H. ( 2011). Biology of Streptococcus mutans-derived glucosyltransferases: role in extracellular matrix formation of cariogenic biofilms. Caries Res 45:69–86 [View Article][PubMed]
    [Google Scholar]
  19. Bradford M. M. ( 1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [View Article][PubMed]
    [Google Scholar]
  20. Brennan M., Thomas D. Y., Whiteway M., Kavanagh K. ( 2002). Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol 34:153–157 [View Article][PubMed]
    [Google Scholar]
  21. Dashper S. G., Reynolds E. C. ( 1992). pH regulation by Streptococcus mutans . J Dent Res 71:1159–1165 [View Article][PubMed]
    [Google Scholar]
  22. Derr A. M., Faustoferri R. C., Betzenhauser M. J., Gonzalez K., Marquis R. E., Quivey R. G. Jr ( 2012). Mutation of the NADH oxidase gene (nox) reveals an overlap of the oxygen- and acid-mediated stress responses in Streptococcus mutans . Appl Environ Microbiol 78:1215–1227 [View Article][PubMed]
    [Google Scholar]
  23. Dye B. A., Thornton-Evans G. ( 2010). Trends in oral health by poverty status as measured by Healthy People 2010 objectives. Public Health Rep 125:817–830[PubMed]
    [Google Scholar]
  24. Dye B. A., Tan S., Smith V., Lewis B. G., Barker L. K., Thornton-Evans G., Eke P. I., Beltrán-Aguilar E. D., Horowitz A. M., Li C. H. ( 2007). Trends in oral health status: United States, 1988–1994 and 1999–2004. Vital Health Stat 11:2481–92[PubMed]
    [Google Scholar]
  25. Evans B. A., Rozen D. E. ( 2012). A Streptococcus pneumoniae infection model in larvae of the wax moth Galleria mellonella . Eur J Clin Microbiol Infect Dis 31:2653–2660 [View Article][PubMed]
    [Google Scholar]
  26. Fozo E. M., Quivey R. G. Jr ( 2004a). Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl Environ Microbiol 70:929–936 [View Article][PubMed]
    [Google Scholar]
  27. Fozo E. M., Quivey R. G. Jr ( 2004b). The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol 186:4152–4158 [View Article][PubMed]
    [Google Scholar]
  28. Fozo E. M., Kajfasz J. K., Quivey R. G. Jr ( 2004). Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol Lett 238:291–295 [View Article][PubMed]
    [Google Scholar]
  29. Fozo E. M., Scott-Anne K., Koo H., Quivey R. G. Jr ( 2007). Role of unsaturated fatty acid biosynthesis in virulence of Streptococcus mutans . Infect Immun 75:1537–1539 [View Article][PubMed]
    [Google Scholar]
  30. Gonzalez K., Faustoferri R. C., Quivey R. G. Jr ( 2012). Role of DNA base excision repair in the mutability and virulence of Streptococcus mutans . Mol Microbiol 85:361–377 [View Article][PubMed]
    [Google Scholar]
  31. Gross E. L., Beall C. J., Kutsch S. R., Firestone N. D., Leys E. J., Griffen A. L. ( 2012). Beyond Streptococcus mutans: dental caries onset linked to multiple species by 16S rRNA community analysis. PLoS ONE 7:e47722 [View Article][PubMed]
    [Google Scholar]
  32. Hanahan D. ( 1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580[PubMed] [CrossRef]
    [Google Scholar]
  33. Harris G. S., Michalek S. M., Curtiss R. III ( 1992). Cloning of a locus involved in Streptococcus mutans intracellular polysaccharide accumulation and virulence testing of an intracellular polysaccharide-deficient mutant. Infect Immun 60:3175–3185[PubMed]
    [Google Scholar]
  34. Huang M., Meng L., Fan M., Hu P., Bian Z. ( 2008). Effect of biofilm formation on virulence factor secretion via the general secretory pathway in Streptococcus mutans . Arch Oral Biol 53:1179–1185 [View Article][PubMed]
    [Google Scholar]
  35. Hüwel S., Haalck L., Conrath N., Spener F. ( 1997). Maltose phosphorylase from Lactobacillus brevis: purification, characterization, and application in a biosensor for ortho-phosphate. Enzyme Microb Technol 21:413–420 [View Article][PubMed]
    [Google Scholar]
  36. Jensen M. E., Schachtele C. F. ( 1983). Plaque pH measurements by different methods on the buccal and approximal surfaces of human teeth after a sucrose rinse. J Dent Res 62:1058–1061 [View Article][PubMed]
    [Google Scholar]
  37. Jensen M. E., Polansky P. J., Schachtele C. F. ( 1982). Plaque sampling and telemetry for monitoring acid production on human buccal tooth surfaces. Arch Oral Biol 27:21–31 [View Article][PubMed]
    [Google Scholar]
  38. Kajfasz J. K., Rivera-Ramos I., Abranches J., Martinez A. R., Rosalen P. L., Derr A. M., Quivey R. G., Lemos J. A. ( 2010). Two Spx proteins modulate stress tolerance, survival, and virulence in Streptococcus mutans . J Bacteriol 192:2546–2556 [View Article][PubMed]
    [Google Scholar]
  39. Klein M. I., Scott-Anne K. M., Gregoire S., Rosalen P. L., Koo H. ( 2012a). Molecular approaches for viable bacterial population and transcriptional analyses in a rodent model of dental caries. Mol Oral Microbiol 27:350–361 [View Article][PubMed]
    [Google Scholar]
  40. Klein M. I., Xiao J., Lu B., Delahunty C. M., Yates J. R. III, Koo H. ( 2012b). Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics. PLoS ONE 7:e45795 [View Article][PubMed]
    [Google Scholar]
  41. Kuhnert W. L., Zheng G., Faustoferri R. C., Quivey R. G. Jr ( 2004). The F-ATPase operon promoter of Streptococcus mutans is transcriptionally regulated in response to external pH. J Bacteriol 186:8524–8528 [View Article][PubMed]
    [Google Scholar]
  42. Lemos J. A., Quivey R. G. Jr, Koo H., Abranches J. ( 2013). Streptococcus mutans: a new Gram-positive paradigm?. Microbiology 159:436–445 [View Article][PubMed]
    [Google Scholar]
  43. Levander F., Rådström P. ( 2001). Requirement for phosphoglucomutase in exopolysaccharide biosynthesis in glucose- and lactose-utilizing Streptococcus thermophilus . Appl Environ Microbiol 67:2734–2738 [View Article][PubMed]
    [Google Scholar]
  44. Levander F., Andersson U., Rådström P. ( 2001). Physiological role of β-phosphoglucomutase in Lactococcus lactis . Appl Environ Microbiol 67:4546–4553 [View Article][PubMed]
    [Google Scholar]
  45. Loesche W. J. ( 1986). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380[PubMed]
    [Google Scholar]
  46. MacGilvray M. E., Lapek J. D. Jr, Friedman A. E., Quivey R. G. Jr ( 2012). Cardiolipin biosynthesis in Streptococcus mutans is regulated in response to external pH. Microbiology 158:2133–2143 [View Article][PubMed]
    [Google Scholar]
  47. Martin S. A., Russell J. B. ( 1987). Transport and phosphorylation of disaccharides by the ruminal bacterium Streptococcus bovis . Appl Environ Microbiol 53:2388–2393[PubMed]
    [Google Scholar]
  48. Matsui R., Cvitkovitch D. ( 2010). Acid tolerance mechanisms utilized by Streptococcus mutans . Future Microbiol 5:403–417 [View Article][PubMed]
    [Google Scholar]
  49. Murchison H. H., Barrett J. F., Cardineau G. A., Curtiss R. III ( 1986). Transformation of Streptococcus mutans with chromosomal and shuttle plasmid (pYA629) DNAs. Infect Immun 54:273–282[PubMed]
    [Google Scholar]
  50. Nihira T., Nakai H., Chiku K., Kitaoka M. ( 2012). Discovery of nigerose phosphorylase from Clostridium phytofermentans . Appl Microbiol Biotechnol 93:1513–1522 [View Article][PubMed]
    [Google Scholar]
  51. Nyvad B., Crielaard W., Mira A., Takahashi N., Beighton D. ( 2013). Dental caries from a molecular microbiological perspective. Caries Res 47:89–102 [View Article][PubMed]
    [Google Scholar]
  52. Qian N., Stanley G. A., Hahn-Hägerdal B., Rådström P. ( 1994). Purification and characterization of two phosphoglucomutases from Lactococcus lactis subsp. lactis and their regulation in maltose- and glucose-utilizing cells. J Bacteriol 176:5304–5311[PubMed]
    [Google Scholar]
  53. Quivey R. G. Jr, Faustoferri R. C., Clancy K. A., Marquis R. E. ( 1995). Acid adaptation in Streptococcus mutans UA159 alleviates sensitization to environmental stress due to RecA deficiency. FEMS Microbiol Lett 126:257–262 [View Article][PubMed]
    [Google Scholar]
  54. Russell R. R., Aduse-Opoku J., Sutcliffe I. C., Tao L., Ferretti J. J. ( 1992). A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J Biol Chem 267:4631–4637[PubMed]
    [Google Scholar]
  55. Santiago B., MacGilvray M., Faustoferri R. C., Quivey R. G. Jr ( 2012). The branched-chain amino acid aminotransferase encoded by ilvE is involved in acid tolerance in Streptococcus mutans . J Bacteriol 194:2010–2019 [View Article][PubMed]
    [Google Scholar]
  56. Selinger Z., Schramm M. ( 1961). Enzymatic synthesis of the maltose analogues, glucosyl glucosamine, glucosyl N-acetyl-glucosamine and glucosyl 2-deoxyglucose by an extract of Neisseria perflava . J Biol Chem 236:2183–2185[PubMed]
    [Google Scholar]
  57. Sheng J., Marquis R. E. ( 2006). Enhanced acid resistance of oral streptococci at lethal pH values associated with acid-tolerant catabolism and with ATP synthase activity. FEMS Microbiol Lett 262:93–98 [View Article][PubMed]
    [Google Scholar]
  58. Sjöberg A., Hahn-Hägerdal B. ( 1989). β-Glucose-1-phosphate, a possible mediator for polysaccharide formation in maltose-assimilating Lactococcus lactis . Appl Environ Microbiol 55:1549–1554[PubMed]
    [Google Scholar]
  59. Smith E. G., Spatafora G. A. ( 2012). Gene regulation in S. mutans: complex control in a complex environment. J Dent Res 91:133–141 [View Article][PubMed]
    [Google Scholar]
  60. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. ( 1985). Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85 [View Article][PubMed]
    [Google Scholar]
  61. Spatafora G., Rohrer K., Barnard D., Michalek S. ( 1995). A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo . Infect Immun 63:2556–2563[PubMed]
    [Google Scholar]
  62. Sturr M. G., Marquis R. E. ( 1990). Inhibition of proton-translocating ATPases of Streptococcus mutans and Lactobacillus casei by fluoride and aluminum. Arch Microbiol 155:22–27 [View Article][PubMed]
    [Google Scholar]
  63. Takahashi N., Nyvad B. ( 2011). The role of bacteria in the caries process: ecological perspectives. J Dent Res 90:294–303 [View Article][PubMed]
    [Google Scholar]
  64. Vilmos P., Kurucz E. ( 1998). Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol Lett 62:59–66 [View Article][PubMed]
    [Google Scholar]
  65. Webb A. J., Homer K. A., Hosie A. H. ( 2007). A phosphoenolpyruvate-dependent phosphotransferase system is the principal maltose transporter in Streptococcus mutans . J Bacteriol 189:3322–3327 [View Article][PubMed]
    [Google Scholar]
  66. Webb A. J., Homer K. A., Hosie A. H. ( 2008). Two closely related ABC transporters in Streptococcus mutans are involved in disaccharide and/or oligosaccharide uptake. J Bacteriol 190:168–178 [View Article][PubMed]
    [Google Scholar]
  67. Whitmore S. E., Lamont R. J. ( 2011). The pathogenic persona of community-associated oral streptococci. Mol Microbiol 81:305–314 [View Article][PubMed]
    [Google Scholar]
  68. Xiao J., Klein M. I., Falsetta M. L., Lu B., Delahunty C. M., Yates J. R. III, Heydorn A., Koo H. ( 2012). The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog 8:e1002623 [View Article][PubMed]
    [Google Scholar]
  69. Zeng L., Xue P., Stanhope M. J., Burne R. A. ( 2013). A galactose-specific sugar: phosphotransferase permease is prevalent in the non-core genome of Streptococcus mutans . Mol Oral Microbiol 28:292–301 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.075754-0
Loading
/content/journal/micro/10.1099/mic.0.075754-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error