A streptolysin S homologue is essential for β-haemolytic subsp. cytotoxicity Free

Abstract

is a member of the Anginosus group streptococci (AGS) and primarily inhabits the human oral cavity. is composed of three subspecies: subsp. (SCC), subsp. and the newly described subspecies subsp. . Although previous studies have established that SCC contains β-haemolytic strains, the factor(s) responsible for β-haemolysis in β-haemolytic SCC (β-SCC) has yet to be clarified. Recently, we discovered that a streptolysin S (SLS) homologue is the β-haemolytic factor of β-haemolytic subsp. (β-SAA), another member of the AGS. Furthermore, because previous studies have suggested that other AGS species, except for , do not possess a haemolysin(s) belonging to the family of cholesterol-dependent cytolysins, we hypothesized that, as with β-SAA, the SLS homologue is the β-haemolytic factor of β-SCC, and therefore aimed to investigate and characterize the haemolytic factor of β-SCC in the present study. PCR amplification revealed that all of the tested β-SCC strains were positive for the homologue of SCC ( ). Further investigations using β-SCC strain W277 were conducted to elucidate the relationship between and β-haemolysis by constructing deletion mutants, which completely lost β-haemolytic activity. This loss of β-haemolytic activity was restored by -complementation of . Furthermore, a co-cultivation assay established that the cytotoxicity of β-SCC was clearly dependent on the presence of . These results demonstrate that is the factor responsible for β-SCC β-haemolysis and cytotoxicity.

Funding
This study was supported by the:
  • Japan Society for the Promotion of Science KAKENHI Grants-in-Aids for Young Scientists (B) (Award 25861746)
  • MEXT-Supported Program for the Strategic Research Foundation at Private Universities (2012–2016)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075580-0
2014-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/980.html?itemId=/content/journal/micro/10.1099/mic.0.075580-0&mimeType=html&fmt=ahah

References

  1. Bolotin S., Fuller J. D., Bast D. J., de Azavedo J. C. ( 2007). The two-component system sivS/R regulates virulence in Streptococcus iniae. FEMS Immunol Med Microbiol 51:547–554 [View Article][PubMed]
    [Google Scholar]
  2. Bouziri A., Khaldi A., Smaoui H., Menif K., Ben Jaballah N. ( 2011). Fatal subdural empyema caused by Streptococcus constellatus and Actinomyces viscosus in a child – case report. J Microbiol Immunol Infect 44:394–396 [View Article][PubMed]
    [Google Scholar]
  3. Chheda L. V., Sobol W. M., Buerk B. M., Kurz P. A. ( 2011). Endogenous endophthalmitis with brain abscesses caused by Streptococcus constellatus. Arch Ophthalmol 129:512–518 [View Article][PubMed]
    [Google Scholar]
  4. Chiang W. C., Tsai J. C., Chen S. Y., Hsu C. Y., Wu C. T., Teng L. J., Hsueh P. R. ( 2004). Mycotic aneurysm caused by Streptococcus constellatus subsp. constellatus. J Clin Microbiol 42:1826–1828 [View Article][PubMed]
    [Google Scholar]
  5. Claridge J. E. III, Attorri S., Musher D. M., Hebert J., Dunbar S. ( 2001). Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus (“Streptococcus milleri group”) are of different clinical importance and are not equally associated with abscess. Clin Infect Dis 32:1511–1515 [View Article][PubMed]
    [Google Scholar]
  6. Concistrè G., Chiaramonti F., Miceli A., Glauber M. ( 2012). Mitral and aortic valve endocarditis caused by a rare pathogen: Streptococcus constellatus. Interact Cardiovasc Thorac Surg 14:889–890 [View Article][PubMed]
    [Google Scholar]
  7. Datta V., Myskowski S. M., Kwinn L. A., Chiem D. N., Varki N., Kansal R. G., Kotb M., Nizet V. ( 2005). Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol 56:681–695 [View Article][PubMed]
    [Google Scholar]
  8. Engleberg N. C., Heath A., Vardaman K., DiRita V. J. ( 2004). Contribution of CsrR-regulated virulence factors to the progress and outcome of murine skin infections by Streptococcus pyogenes. Infect Immun 72:623–628 [View Article][PubMed]
    [Google Scholar]
  9. Federle M. J., McIver K. S., Scott J. R. ( 1999). A response regulator that represses transcription of several virulence operons in the group A streptococcus. J Bacteriol 181:3649–3657[PubMed]
    [Google Scholar]
  10. Gogineni V. K., Modrykamien A. ( 2011). Lung abscesses in 2 patients with Lancefield group F streptococci (Streptococcus milleri group). Respir Care 56:1966–1969 [View Article][PubMed]
    [Google Scholar]
  11. Goto T., Nagamune H., Miyazaki A., Kawamura Y., Ohnishi O., Hattori K., Ohkura K., Miyamoto K., Akimoto S. & other authors ( 2002). Rapid identification of Streptococcus intermedius by PCR with the ily gene as a species marker gene. J Med Microbiol 51:178–186[PubMed]
    [Google Scholar]
  12. Graham M. R., Smoot L. M., Migliaccio C. A., Virtaneva K., Sturdevant D. E., Porcella S. F., Federle M. J., Adams G. J., Scott J. R., Musser J. M. ( 2002). Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A 99:13855–13860 [View Article][PubMed]
    [Google Scholar]
  13. Grinwis M. E., Sibley C. D., Parkins M. D., Eshaghurshan C. S., Rabin H. R., Surette M. G. ( 2010). Characterization of Streptococcus milleri group isolates from expectorated sputum of adult patients with cystic fibrosis. J Clin Microbiol 48:395–401 [View Article][PubMed]
    [Google Scholar]
  14. Hung C. H., Tsao N., Zeng Y. F., Lu S. L., Chuan C. N., Lin Y. S., Wu J. J., Kuo C. F. ( 2012). Synergistic effects of streptolysin S and streptococcal pyrogenic exotoxin B on the mouse model of group A streptococcal infection. Med Microbiol Immunol (Berl) 201:357–369 [View Article][PubMed]
    [Google Scholar]
  15. Jensen A., Hoshino T., Kilian M. ( 2013). Taxonomy of the Anginosus group of the genus Streptococcus and description of Streptococcus anginosus subsp. whileyi subsp. nov. and Streptococcus constellatus subsp. viborgensis subsp. nov.. Int J Syst Evol Microbiol 63:2506–2519 [View Article][PubMed]
    [Google Scholar]
  16. Kietzman C. C., Caparon M. G. ( 2010). CcpA and LacD.1 affect temporal regulation of Streptococcus pyogenes virulence genes. Infect Immun 78:241–252 [View Article][PubMed]
    [Google Scholar]
  17. Kinkel T. L., McIver K. S. ( 2008). CcpA-mediated repression of streptolysin S expression and virulence in the group A streptococcus. Infect Immun 76:3451–3463 [View Article][PubMed]
    [Google Scholar]
  18. Koyama J. ( 1965). Kinetic study on streptolysin S. J Biochem 57:103–108[PubMed]
    [Google Scholar]
  19. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. & other authors ( 2007). Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  20. Lutz R., Bujard H. ( 1997). Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–1210 [View Article][PubMed]
    [Google Scholar]
  21. Marinella M. A. ( 1997). Streptococcus constellatus endocarditis presenting as acute embolic stroke. Clin Infect Dis 24:1271–1272 [View Article][PubMed]
    [Google Scholar]
  22. Mitchell D. A., Lee S. W., Pence M. A., Markley A. L., Limm J. D., Nizet V., Dixon J. E. ( 2009). Structural and functional dissection of the heterocyclic peptide cytotoxin streptolysin S. J Biol Chem 284:13004–13012 [View Article][PubMed]
    [Google Scholar]
  23. Molloy E. M., Cotter P. D., Hill C., Mitchell D. A., Ross R. P. ( 2011). Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 9:670–681 [View Article][PubMed]
    [Google Scholar]
  24. Nagamune H., Ohnishi C., Katsuura A., Fushitani K., Whiley R. A., Tsuji A., Matsuda Y. ( 1996). Intermedilysin, a novel cytotoxin specific for human cells secreted by Streptococcus intermedius UNS46 isolated from a human liver abscess. Infect Immun 64:3093–3100[PubMed]
    [Google Scholar]
  25. Nagamune H., Whiley R. A., Goto T., Inai Y., Maeda T., Hardie J. M., Kourai H. ( 2000). Distribution of the intermedilysin gene among the anginosus group streptococci and correlation between intermedilysin production and deep-seated infection with Streptococcus intermedius. J Clin Microbiol 38:220–226[PubMed]
    [Google Scholar]
  26. Nizet V., Beall B., Bast D. J., Datta V., Kilburn L., Low D. E., De Azavedo J. C. ( 2000). Genetic locus for streptolysin S production by group A streptococcus. Infect Immun 68:4245–4254 [View Article][PubMed]
    [Google Scholar]
  27. Perrière G., Gouy M. ( 1996). WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369 [View Article][PubMed]
    [Google Scholar]
  28. Poole P. M., Wilson G. ( 1979). Occurrence and cultural features of Streptococcus milleri in various body sites. J Clin Pathol 32:764–768 [View Article][PubMed]
    [Google Scholar]
  29. Ruoff K. L. ( 1988). Streptococcus anginosus (“Streptococcus milleri”): the unrecognized pathogen. Clin Microbiol Rev 1:102–108[PubMed]
    [Google Scholar]
  30. Shelburne S. A. III, Keith D., Horstmann N., Sumby P., Davenport M. T., Graviss E. A., Brennan R. G., Musser J. M. ( 2008). A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc Natl Acad Sci U S A 105:1698–1703 [View Article][PubMed]
    [Google Scholar]
  31. Sukeno A., Nagamune H., Whiley R. A., Jafar S. I., Aduse-Opoku J., Ohkura K., Maeda T., Hirota K., Miyake Y., Kourai H. ( 2005). Intermedilysin is essential for the invasion of hepatoma HepG2 cells by Streptococcus intermedius. Microbiol Immunol 49:681–694 [View Article][PubMed]
    [Google Scholar]
  32. Tabata A., Nakano K., Ohkura K., Tomoyasu T., Kikuchi K., Whiley R. A., Nagamune H. ( 2013). Novel twin streptolysin S-like peptides encoded in the sag operon homologue of beta-hemolytic Streptococcus anginosus. J Bacteriol 195:1090–1099 [View Article][PubMed]
    [Google Scholar]
  33. Takao A., Nagamune H., Maeda N. ( 2004). Identification of the anginosus group within the genus Streptococcus using polymerase chain reaction. FEMS Microbiol Lett 233:83–89 [View Article][PubMed]
    [Google Scholar]
  34. Taketo A., Taketo Y. ( 1964). Biochemical studies on streptolysin S formation. I. Streptolysin S formation in cell free system. J Biochem 56:552–561[PubMed]
    [Google Scholar]
  35. Tomoyasu T., Tabata A., Imaki H., Tsuruno K., Miyazaki A., Sonomoto K., Whiley R. A., Nagamune H. ( 2012). Role of Streptococcus intermedius DnaK chaperone system in stress tolerance and pathogenicity. Cell Stress Chaperones 17:41–55 [View Article][PubMed]
    [Google Scholar]
  36. Whiley R. A., Beighton D. ( 1991). Emended descriptions and recognition of Streptococcus constellatus, Streptococcus intermedius, and Streptococcus anginosus as distinct species. Int J Syst Bacteriol 41:1–5 [View Article][PubMed]
    [Google Scholar]
  37. Whiley R. A., Beighton D., Winstanley T. G., Fraser H. Y., Hardie J. M. ( 1992). Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus (the Streptococcus milleri group): association with different body sites and clinical infections. J Clin Microbiol 30:243–244[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075580-0
Loading
/content/journal/micro/10.1099/mic.0.075580-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed