1887

Abstract

In this study, we characterized FgIlv5, a homologue of the keto-acid reductoisomerase (KARI) from the important wheat head scab fungus . KARI is a key enzyme in the branched-chain amino acid (BCAA, including leucine, isoleucine and valine) biosynthetic pathway that exists in a variety of organisms from bacteria to fungi and higher plants, but not in mammals. The deletion mutant ΔFgIlv5-4 failed to grow when the culture medium was nutritionally limited for BCAAs. When grown on potato-dextrose agar plates, ΔFgIlv5-4 exhibited a significant decrease in aerial hyphae formation and red pigmentation. Conidia formation was also blocked in ΔFgIlv5-4. Exogenous addition of 1 mM isoleucine and valine was able to rescue the defects of mycelial growth and conidial morphogenesis. Cellular stress assays showed that ΔFgIlv5-4 was more sensitive to osmotic and oxidative stresses than the wild-type strain. In addition, virulence of ΔFgIlv5-4 was dramatically reduced on wheat heads, and a low level of deoxynivalenol production was detected in ΔFgIlv5-4 in wheat kernels. The results of this study indicate that FgIlv5 is involved in valine and isoleucine biosynthesis and is required for full virulence in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075333-0
2014-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/692.html?itemId=/content/journal/micro/10.1099/mic.0.075333-0&mimeType=html&fmt=ahah

References

  1. Aulabaugh A. , Schloss J. V. . ( 1990; ). Oxalyl hydroxamates as reaction-intermediate analogues for ketol-acid reductoisomerase. . Biochemistry 29:, 2824–2830. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bai G. H. , Desjardins A. E. , Plattner R. D. . ( 2002; ). Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. . Mycopathologia 153:, 91–98. [CrossRef] [PubMed]
    [Google Scholar]
  3. Blandino M. , Minelli L. , Reyneri A. . ( 2006; ). Strategies for the chemical control of Fusarium head blight: effect on yield, alveographic parameters and deoxynivalenol contamination in winter wheat grain. . Eur J Agron 25:, 193–201.[CrossRef]
    [Google Scholar]
  4. Bluhm B. H. , Zhao X. , Flaherty J. E. , Xu J. R. , Dunkle L. D. . ( 2007; ). RAS2 regulates growth and pathogenesis in Fusarium graminearum . . Mol Plant Microbe Interact 20:, 627–636. [CrossRef] [PubMed]
    [Google Scholar]
  5. Champeil A. , Fourbet J. F. , Doré T. . ( 2004; ). Effects of grain sampling procedures on Fusarium mycotoxin assays in wheat grains. . J Agric Food Chem 52:, 6049–6054. [CrossRef] [PubMed]
    [Google Scholar]
  6. Chen C. , Wang J. , Luo Q. , Yuan S. , Zhou M. . ( 2007; ). Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). . Pest Manage Sci 63:, 1201–1207.[CrossRef]
    [Google Scholar]
  7. Dean R. , Van Kan J. A. , Pretorius Z. A. , Hammond-Kosack K. E. , Di Pietro A. , Spanu P. D. , Rudd J. J. , Dickman M. , Kahmann R. . & other authors ( 2012; ). The Top 10 fungal pathogens in molecular plant pathology. . Mol Plant Pathol 13:, 414–430. [CrossRef] [PubMed]
    [Google Scholar]
  8. Goswami R. S. , Kistler H. C. . ( 2004; ). Heading for disaster: Fusarium graminearum on cereal crops. . Mol Plant Pathol 5:, 515–525. [CrossRef] [PubMed]
    [Google Scholar]
  9. Harris R. A. , Joshi M. , Jeoung N. H. . ( 2004; ). Mechanisms responsible for regulation of branched-chain amino acid catabolism. . Biochem Biophys Res Commun 313:, 391–396. [CrossRef] [PubMed]
    [Google Scholar]
  10. Jiang J. , Yun Y. , Yang Q. , Shim W.-B. , Wang Z. , Ma Z. . ( 2011; ). A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum . . PLoS ONE 6:, e25311. [CrossRef] [PubMed]
    [Google Scholar]
  11. Kim J. E. , Han K. H. , Jin J. , Kim H. , Kim J. C. , Yun S. H. , Lee Y. W. . ( 2005; ). Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae . . Appl Environ Microbiol 71:, 1701–1708. [CrossRef] [PubMed]
    [Google Scholar]
  12. Kim J. E. , Jin J. , Kim H. , Kim J. C. , Yun S. H. , Lee Y. W. . ( 2006; ). GIP2, a putative transcription factor that regulates the aurofusarin biosynthetic gene cluster in Gibberella zeae . . Appl Environ Microbiol 72:, 1645–1652. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kingsbury J. M. , McCusker J. H. . ( 2010; ). Cytocidal amino acid starvation of Saccharomyces cerevisiae and Candida albicans acetolactate synthase (ilv2Δ) mutants is influenced by the carbon source and rapamycin. . Microbiology 156:, 929–939. [CrossRef] [PubMed]
    [Google Scholar]
  14. Kingsbury J. M. , Yang Z. , Ganous T. M. , Cox G. M. , McCusker J. H. . ( 2004; ). Cryptococcus neoformans Ilv2p confers resistance to sulfometuron methyl and is required for survival at 37 °C and in vivo . . Microbiology 150:, 1547–1558. [CrossRef] [PubMed]
    [Google Scholar]
  15. Kingsbury J. M. , Goldstein A. L. , McCusker J. H. . ( 2006; ). Role of nitrogen and carbon transport, regulation, and metabolism genes for Saccharomyces cerevisiae survival in vivo . . Eukaryot Cell 5:, 816–824. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kohlhaw G. B. . ( 2003; ). Leucine biosynthesis in fungi: entering metabolism through the back door. . Microbiol Mol Biol Rev 67:, 1–15. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kreisberg J. F. , Ong N. T. , Krishna A. , Joseph T. L. , Wang J. , Ong C. , Ooi H. A. , Sung J. C. , Siew C. C. . & other authors ( 2013; ). Growth inhibition of pathogenic bacteria by sulfonylurea herbicides. . Antimicrob Agents Chemother 57:, 1513–1517. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lechoczki-Krsjak S. , Toth B. , Kotai C. , Martonosi I. , Farady L. , Kondrak L. , Szabo-Hever A. , Mesterhazy A. . ( 2008; ). Chemical control of FHB in wheat with different nozzle types and fungicides. . Cereal Res Commun 36:, 677–681.[CrossRef]
    [Google Scholar]
  19. Lee Y.-T. , Ta H. T. , Duggleby R. G. . ( 2005; ). Cyclopropane-1,1-dicarboxylate is a slow-, tight-binding inhibitor of rice ketol-acid reductoisomerase. . Plant Sci 168:, 1035–1040. [CrossRef]
    [Google Scholar]
  20. Lee Y. T. , Cui C. J. , Chow E. W. , Pue N. , Lonhienne T. , Wang J. G. , Fraser J. A. , Guddat L. W. . ( 2013; ). Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase. . J Med Chem 56:, 210–219. [CrossRef] [PubMed]
    [Google Scholar]
  21. Liu Z. , Friesen T. L. . ( 2012; ). Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. . Methods Mol Biol 835:, 365–375. [CrossRef] [PubMed]
    [Google Scholar]
  22. Liu X. H. , Chen P. Q. , Wang B. L. , Li Y. H. , Wang S. H. , Li Z. M. . ( 2007; ). Synthesis, bioactivity, theoretical and molecular docking study of 1-cyano-N-substituted-cyclopropanecarboxamide as ketol-acid reductoisomerase inhibitor. . Bioorg Med Chem Lett 17:, 3784–3788. [CrossRef] [PubMed]
    [Google Scholar]
  23. Liu X. , Yin Y. N. , Wu J. B. , Jiang J. H. , Ma Z. H. . ( 2010; ). Identification and characterization of carbendazim-resistant isolates of Gibberella zeae . . Plant Dis 94:, 137–142.
    [Google Scholar]
  24. Liu X. , Fu J. , Yun Y. , Yin Y. , Ma Z. . ( 2011; ). A sterol C-14 reductase encoded by FgERG24B is responsible for the intrinsic resistance of Fusarium graminearum to amine fungicides. . Microbiology 157:, 1665–1675. [CrossRef] [PubMed]
    [Google Scholar]
  25. Livak K. J. , Schmittgen T. D. . ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔ C T method. . Methods 25:, 402–408. [CrossRef] [PubMed]
    [Google Scholar]
  26. Macierzanka M. , Plotka M. , Pryputniewicz-Drobinska D. , Lewandowska A. , Lightowlers R. , Marszalek J. . ( 2008; ). Maintenance and stabilization of mtDNA can be facilitated by the DNA-binding activity of Ilv5p. . Biochim Biophys Acta 1783:, 107–117. [CrossRef] [PubMed]
    [Google Scholar]
  27. Malz S. , Grell M. N. , Thrane C. , Maier F. J. , Rosager P. , Felk A. , Albertsen K. S. , Salomon S. , Bohn L. . & other authors ( 2005; ). Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. . Fungal Genet Biol 42:, 420–433. [CrossRef] [PubMed]
    [Google Scholar]
  28. McCourt J. A. , Duggleby R. G. . ( 2006; ). Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. . Amino Acids 31:, 173–210. [CrossRef] [PubMed]
    [Google Scholar]
  29. Merhej J. , Boutigny A.-L. , Pinson-Gadais L. , Richard-Forget F. , Barreau C. . ( 2010; ). Acidic pH as a determinant of TRI gene expression and trichothecene B biosynthesis in Fusarium graminearum . . Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27:, 710–717. [CrossRef] [PubMed]
    [Google Scholar]
  30. Morya V. K. , Kumari S. , Kim E. K. . ( 2012; ). Virtual screening and evaluation of Ketol-Acid Reducto-Isomerase (KARI) as a putative drug target for Aspergillosis. . Clin Proteomics 9:, 1. [CrossRef] [PubMed]
    [Google Scholar]
  31. Oliver J. D. , Kaye S. J. , Tuckwell D. , Johns A. E. , Macdonald D. A. , Livermore J. , Warn P. A. , Birch M. , Bromley M. J. . ( 2012; ). The Aspergillus fumigatus dihydroxyacid dehydratase Ilv3A/IlvC is required for full virulence. . PLoS ONE 7:, e43559. [CrossRef] [PubMed]
    [Google Scholar]
  32. Sasanya J. J. , Hall C. , Wolf-Hall C. . ( 2008; ). Analysis of deoxynivalenol, masked deoxynivalenol, and Fusarium graminearum pigment in wheat samples, using liquid chromatography-UV-mass spectrometry. . J Food Prot 71:, 1205–1213.[PubMed]
    [Google Scholar]
  33. Schulz A. , Spönemann P. , Köcher H. , Wengenmayer F. . ( 1988; ). The herbicidally active experimental compound Hoe 704 is a potent inhibitor of the enzyme acetolactate reductoisomerase. . FEBS Lett 238:, 375–378. [CrossRef] [PubMed]
    [Google Scholar]
  34. Soleimany F. , Jinap S. , Abas F. . ( 2012; ). Determination of mycotoxins in cereals by liquid chromatography tandem mass spectrometry. . Food Chem 130:, 1055–1060. [CrossRef]
    [Google Scholar]
  35. Tan S. , Evans R. , Singh B. . ( 2006; ). Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. . Amino Acids 30:, 195–204. [CrossRef] [PubMed]
    [Google Scholar]
  36. Wang J. , Zhou M. . ( 2002; ). Monitoring and management of MBC resistance in Gibberella zeae . . J Nanjing Agric Univ 25:, 43–47.
    [Google Scholar]
  37. Wu A. B. , Li H. P. , Zhao C. S. , Liao Y. C. . ( 2005; ). Comparative pathogenicity of Fusarium graminearum isolates from China revealed by wheat coleoptile and floret inoculations. . Mycopathologia 160:, 75–83. [CrossRef] [PubMed]
    [Google Scholar]
  38. Yoshizawa F. . ( 2004; ). Regulation of protein synthesis by branched-chain amino acids in vivo . . Biochem Biophys Res Commun 313:, 417–422. [CrossRef] [PubMed]
    [Google Scholar]
  39. Zhan J. , Mundt C. C. , McDonald B. A. . ( 2001; ). Using restriction fragment length polymorphisms to assess temporal variation and estimate the number of ascospores that initiate epidemics in field populations of Mycosphaerella graminicola . . Phytopathology 91:, 1011–1017. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075333-0
Loading
/content/journal/micro/10.1099/mic.0.075333-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error