1887

Abstract

In this study, we characterized FgIlv5, a homologue of the keto-acid reductoisomerase (KARI) from the important wheat head scab fungus . KARI is a key enzyme in the branched-chain amino acid (BCAA, including leucine, isoleucine and valine) biosynthetic pathway that exists in a variety of organisms from bacteria to fungi and higher plants, but not in mammals. The deletion mutant ΔFgIlv5-4 failed to grow when the culture medium was nutritionally limited for BCAAs. When grown on potato-dextrose agar plates, ΔFgIlv5-4 exhibited a significant decrease in aerial hyphae formation and red pigmentation. Conidia formation was also blocked in ΔFgIlv5-4. Exogenous addition of 1 mM isoleucine and valine was able to rescue the defects of mycelial growth and conidial morphogenesis. Cellular stress assays showed that ΔFgIlv5-4 was more sensitive to osmotic and oxidative stresses than the wild-type strain. In addition, virulence of ΔFgIlv5-4 was dramatically reduced on wheat heads, and a low level of deoxynivalenol production was detected in ΔFgIlv5-4 in wheat kernels. The results of this study indicate that FgIlv5 is involved in valine and isoleucine biosynthesis and is required for full virulence in .

Funding
This study was supported by the:
  • National Science Foundation of China (Award 31301623)
  • Jiangsu Provincial Natural Science Foundation (Award BK20130704)
  • Jiangsu Agricultural Science and Technology Innovation Fund (Award CX(13)5050)
  • Special Fund for Agro-scientific Research in the Public Interest (Award 201303016)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075333-0
2014-04-01
2021-08-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/692.html?itemId=/content/journal/micro/10.1099/mic.0.075333-0&mimeType=html&fmt=ahah

References

  1. Aulabaugh A., Schloss J. V. ( 1990). Oxalyl hydroxamates as reaction-intermediate analogues for ketol-acid reductoisomerase. Biochemistry 29:2824–2830 [View Article][PubMed]
    [Google Scholar]
  2. Bai G. H., Desjardins A. E., Plattner R. D. ( 2002). Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 153:91–98 [View Article][PubMed]
    [Google Scholar]
  3. Blandino M., Minelli L., Reyneri A. ( 2006). Strategies for the chemical control of Fusarium head blight: effect on yield, alveographic parameters and deoxynivalenol contamination in winter wheat grain. Eur J Agron 25:193–201 [CrossRef]
    [Google Scholar]
  4. Bluhm B. H., Zhao X., Flaherty J. E., Xu J. R., Dunkle L. D. ( 2007). RAS2 regulates growth and pathogenesis in Fusarium graminearum . Mol Plant Microbe Interact 20:627–636 [View Article][PubMed]
    [Google Scholar]
  5. Champeil A., Fourbet J. F., Doré T. ( 2004). Effects of grain sampling procedures on Fusarium mycotoxin assays in wheat grains. J Agric Food Chem 52:6049–6054 [View Article][PubMed]
    [Google Scholar]
  6. Chen C., Wang J., Luo Q., Yuan S., Zhou M. ( 2007). Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Manage Sci 63:1201–1207 [CrossRef]
    [Google Scholar]
  7. Dean R., Van Kan J. A., Pretorius Z. A., Hammond-Kosack K. E., Di Pietro A., Spanu P. D., Rudd J. J., Dickman M., Kahmann R. & other authors ( 2012). The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430 [View Article][PubMed]
    [Google Scholar]
  8. Goswami R. S., Kistler H. C. ( 2004). Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525 [View Article][PubMed]
    [Google Scholar]
  9. Harris R. A., Joshi M., Jeoung N. H. ( 2004). Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem Biophys Res Commun 313:391–396 [View Article][PubMed]
    [Google Scholar]
  10. Jiang J., Yun Y., Yang Q., Shim W.-B., Wang Z., Ma Z. ( 2011). A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum . PLoS ONE 6:e25311 [View Article][PubMed]
    [Google Scholar]
  11. Kim J. E., Han K. H., Jin J., Kim H., Kim J. C., Yun S. H., Lee Y. W. ( 2005). Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae . Appl Environ Microbiol 71:1701–1708 [View Article][PubMed]
    [Google Scholar]
  12. Kim J. E., Jin J., Kim H., Kim J. C., Yun S. H., Lee Y. W. ( 2006). GIP2, a putative transcription factor that regulates the aurofusarin biosynthetic gene cluster in Gibberella zeae . Appl Environ Microbiol 72:1645–1652 [View Article][PubMed]
    [Google Scholar]
  13. Kingsbury J. M., McCusker J. H. ( 2010). Cytocidal amino acid starvation of Saccharomyces cerevisiae and Candida albicans acetolactate synthase (ilv2Δ) mutants is influenced by the carbon source and rapamycin. Microbiology 156:929–939 [View Article][PubMed]
    [Google Scholar]
  14. Kingsbury J. M., Yang Z., Ganous T. M., Cox G. M., McCusker J. H. ( 2004). Cryptococcus neoformans Ilv2p confers resistance to sulfometuron methyl and is required for survival at 37 °C and in vivo . Microbiology 150:1547–1558 [View Article][PubMed]
    [Google Scholar]
  15. Kingsbury J. M., Goldstein A. L., McCusker J. H. ( 2006). Role of nitrogen and carbon transport, regulation, and metabolism genes for Saccharomyces cerevisiae survival in vivo . Eukaryot Cell 5:816–824 [View Article][PubMed]
    [Google Scholar]
  16. Kohlhaw G. B. ( 2003). Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev 67:1–15 [View Article][PubMed]
    [Google Scholar]
  17. Kreisberg J. F., Ong N. T., Krishna A., Joseph T. L., Wang J., Ong C., Ooi H. A., Sung J. C., Siew C. C. & other authors ( 2013). Growth inhibition of pathogenic bacteria by sulfonylurea herbicides. Antimicrob Agents Chemother 57:1513–1517 [View Article][PubMed]
    [Google Scholar]
  18. Lechoczki-Krsjak S., Toth B., Kotai C., Martonosi I., Farady L., Kondrak L., Szabo-Hever A., Mesterhazy A. ( 2008). Chemical control of FHB in wheat with different nozzle types and fungicides. Cereal Res Commun 36:677–681 [CrossRef]
    [Google Scholar]
  19. Lee Y.-T., Ta H. T., Duggleby R. G. ( 2005). Cyclopropane-1,1-dicarboxylate is a slow-, tight-binding inhibitor of rice ketol-acid reductoisomerase. Plant Sci 168:1035–1040 [View Article]
    [Google Scholar]
  20. Lee Y. T., Cui C. J., Chow E. W., Pue N., Lonhienne T., Wang J. G., Fraser J. A., Guddat L. W. ( 2013). Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase. J Med Chem 56:210–219 [View Article][PubMed]
    [Google Scholar]
  21. Liu Z., Friesen T. L. ( 2012). Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. Methods Mol Biol 835:365–375 [View Article][PubMed]
    [Google Scholar]
  22. Liu X. H., Chen P. Q., Wang B. L., Li Y. H., Wang S. H., Li Z. M. ( 2007). Synthesis, bioactivity, theoretical and molecular docking study of 1-cyano-N-substituted-cyclopropanecarboxamide as ketol-acid reductoisomerase inhibitor. Bioorg Med Chem Lett 17:3784–3788 [View Article][PubMed]
    [Google Scholar]
  23. Liu X., Yin Y. N., Wu J. B., Jiang J. H., Ma Z. H. ( 2010). Identification and characterization of carbendazim-resistant isolates of Gibberella zeae . Plant Dis 94:137–142
    [Google Scholar]
  24. Liu X., Fu J., Yun Y., Yin Y., Ma Z. ( 2011). A sterol C-14 reductase encoded by FgERG24B is responsible for the intrinsic resistance of Fusarium graminearum to amine fungicides. Microbiology 157:1665–1675 [View Article][PubMed]
    [Google Scholar]
  25. Livak K. J., Schmittgen T. D. ( 2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔ C T method. Methods 25:402–408 [View Article][PubMed]
    [Google Scholar]
  26. Macierzanka M., Plotka M., Pryputniewicz-Drobinska D., Lewandowska A., Lightowlers R., Marszalek J. ( 2008). Maintenance and stabilization of mtDNA can be facilitated by the DNA-binding activity of Ilv5p. Biochim Biophys Acta 1783:107–117 [View Article][PubMed]
    [Google Scholar]
  27. Malz S., Grell M. N., Thrane C., Maier F. J., Rosager P., Felk A., Albertsen K. S., Salomon S., Bohn L. & other authors ( 2005). Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Fungal Genet Biol 42:420–433 [View Article][PubMed]
    [Google Scholar]
  28. McCourt J. A., Duggleby R. G. ( 2006). Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31:173–210 [View Article][PubMed]
    [Google Scholar]
  29. Merhej J., Boutigny A.-L., Pinson-Gadais L., Richard-Forget F., Barreau C. ( 2010). Acidic pH as a determinant of TRI gene expression and trichothecene B biosynthesis in Fusarium graminearum . Food Addit Contam Part A Chem Anal Control Expo Risk Assess 27:710–717 [View Article][PubMed]
    [Google Scholar]
  30. Morya V. K., Kumari S., Kim E. K. ( 2012). Virtual screening and evaluation of Ketol-Acid Reducto-Isomerase (KARI) as a putative drug target for Aspergillosis. Clin Proteomics 9:1 [View Article][PubMed]
    [Google Scholar]
  31. Oliver J. D., Kaye S. J., Tuckwell D., Johns A. E., Macdonald D. A., Livermore J., Warn P. A., Birch M., Bromley M. J. ( 2012). The Aspergillus fumigatus dihydroxyacid dehydratase Ilv3A/IlvC is required for full virulence. PLoS ONE 7:e43559 [View Article][PubMed]
    [Google Scholar]
  32. Sasanya J. J., Hall C., Wolf-Hall C. ( 2008). Analysis of deoxynivalenol, masked deoxynivalenol, and Fusarium graminearum pigment in wheat samples, using liquid chromatography-UV-mass spectrometry. J Food Prot 71:1205–1213[PubMed]
    [Google Scholar]
  33. Schulz A., Spönemann P., Köcher H., Wengenmayer F. ( 1988). The herbicidally active experimental compound Hoe 704 is a potent inhibitor of the enzyme acetolactate reductoisomerase. FEBS Lett 238:375–378 [View Article][PubMed]
    [Google Scholar]
  34. Soleimany F., Jinap S., Abas F. ( 2012). Determination of mycotoxins in cereals by liquid chromatography tandem mass spectrometry. Food Chem 130:1055–1060 [View Article]
    [Google Scholar]
  35. Tan S., Evans R., Singh B. ( 2006). Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids 30:195–204 [View Article][PubMed]
    [Google Scholar]
  36. Wang J., Zhou M. ( 2002). Monitoring and management of MBC resistance in Gibberella zeae . J Nanjing Agric Univ 25:43–47
    [Google Scholar]
  37. Wu A. B., Li H. P., Zhao C. S., Liao Y. C. ( 2005). Comparative pathogenicity of Fusarium graminearum isolates from China revealed by wheat coleoptile and floret inoculations. Mycopathologia 160:75–83 [View Article][PubMed]
    [Google Scholar]
  38. Yoshizawa F. ( 2004). Regulation of protein synthesis by branched-chain amino acids in vivo . Biochem Biophys Res Commun 313:417–422 [View Article][PubMed]
    [Google Scholar]
  39. Zhan J., Mundt C. C., McDonald B. A. ( 2001). Using restriction fragment length polymorphisms to assess temporal variation and estimate the number of ascospores that initiate epidemics in field populations of Mycosphaerella graminicola . Phytopathology 91:1011–1017 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075333-0
Loading
/content/journal/micro/10.1099/mic.0.075333-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error