1887

Abstract

In this study, we characterized FgIlv5, a homologue of the keto-acid reductoisomerase (KARI) from the important wheat head scab fungus . KARI is a key enzyme in the branched-chain amino acid (BCAA, including leucine, isoleucine and valine) biosynthetic pathway that exists in a variety of organisms from bacteria to fungi and higher plants, but not in mammals. The deletion mutant ΔFgIlv5-4 failed to grow when the culture medium was nutritionally limited for BCAAs. When grown on potato-dextrose agar plates, ΔFgIlv5-4 exhibited a significant decrease in aerial hyphae formation and red pigmentation. Conidia formation was also blocked in ΔFgIlv5-4. Exogenous addition of 1 mM isoleucine and valine was able to rescue the defects of mycelial growth and conidial morphogenesis. Cellular stress assays showed that ΔFgIlv5-4 was more sensitive to osmotic and oxidative stresses than the wild-type strain. In addition, virulence of ΔFgIlv5-4 was dramatically reduced on wheat heads, and a low level of deoxynivalenol production was detected in ΔFgIlv5-4 in wheat kernels. The results of this study indicate that FgIlv5 is involved in valine and isoleucine biosynthesis and is required for full virulence in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075333-0
2014-04-01
2020-08-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/692.html?itemId=/content/journal/micro/10.1099/mic.0.075333-0&mimeType=html&fmt=ahah

References

  1. Aulabaugh A., Schloss J. V.. ( 1990;). Oxalyl hydroxamates as reaction-intermediate analogues for ketol-acid reductoisomerase. Biochemistry29:2824–2830 [CrossRef][PubMed]
    [Google Scholar]
  2. Bai G. H., Desjardins A. E., Plattner R. D.. ( 2002;). Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia153:91–98 [CrossRef][PubMed]
    [Google Scholar]
  3. Blandino M., Minelli L., Reyneri A.. ( 2006;). Strategies for the chemical control of Fusarium head blight: effect on yield, alveographic parameters and deoxynivalenol contamination in winter wheat grain. Eur J Agron25:193–201[CrossRef]
    [Google Scholar]
  4. Bluhm B. H., Zhao X., Flaherty J. E., Xu J. R., Dunkle L. D.. ( 2007;). RAS2 regulates growth and pathogenesis in Fusarium graminearum . Mol Plant Microbe Interact20:627–636 [CrossRef][PubMed]
    [Google Scholar]
  5. Champeil A., Fourbet J. F., Doré T.. ( 2004;). Effects of grain sampling procedures on Fusarium mycotoxin assays in wheat grains. J Agric Food Chem52:6049–6054 [CrossRef][PubMed]
    [Google Scholar]
  6. Chen C., Wang J., Luo Q., Yuan S., Zhou M.. ( 2007;). Characterization and fitness of carbendazim-resistant strains of Fusarium graminearum (wheat scab). Pest Manage Sci63:1201–1207[CrossRef]
    [Google Scholar]
  7. Dean R., Van Kan J. A., Pretorius Z. A., Hammond-Kosack K. E., Di Pietro A., Spanu P. D., Rudd J. J., Dickman M., Kahmann R.. & other authors ( 2012;). The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol13:414–430 [CrossRef][PubMed]
    [Google Scholar]
  8. Goswami R. S., Kistler H. C.. ( 2004;). Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol5:515–525 [CrossRef][PubMed]
    [Google Scholar]
  9. Harris R. A., Joshi M., Jeoung N. H.. ( 2004;). Mechanisms responsible for regulation of branched-chain amino acid catabolism. Biochem Biophys Res Commun313:391–396 [CrossRef][PubMed]
    [Google Scholar]
  10. Jiang J., Yun Y., Yang Q., Shim W.-B., Wang Z., Ma Z.. ( 2011;). A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum . PLoS ONE6:e25311 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim J. E., Han K. H., Jin J., Kim H., Kim J. C., Yun S. H., Lee Y. W.. ( 2005;). Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae . Appl Environ Microbiol71:1701–1708 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim J. E., Jin J., Kim H., Kim J. C., Yun S. H., Lee Y. W.. ( 2006;). GIP2, a putative transcription factor that regulates the aurofusarin biosynthetic gene cluster in Gibberella zeae . Appl Environ Microbiol72:1645–1652 [CrossRef][PubMed]
    [Google Scholar]
  13. Kingsbury J. M., McCusker J. H.. ( 2010;). Cytocidal amino acid starvation of Saccharomyces cerevisiae and Candida albicans acetolactate synthase (ilv2Δ) mutants is influenced by the carbon source and rapamycin. Microbiology156:929–939 [CrossRef][PubMed]
    [Google Scholar]
  14. Kingsbury J. M., Yang Z., Ganous T. M., Cox G. M., McCusker J. H.. ( 2004;). Cryptococcus neoformans Ilv2p confers resistance to sulfometuron methyl and is required for survival at 37 °C and in vivo . Microbiology150:1547–1558 [CrossRef][PubMed]
    [Google Scholar]
  15. Kingsbury J. M., Goldstein A. L., McCusker J. H.. ( 2006;). Role of nitrogen and carbon transport, regulation, and metabolism genes for Saccharomyces cerevisiae survival in vivo . Eukaryot Cell5:816–824 [CrossRef][PubMed]
    [Google Scholar]
  16. Kohlhaw G. B.. ( 2003;). Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev67:1–15 [CrossRef][PubMed]
    [Google Scholar]
  17. Kreisberg J. F., Ong N. T., Krishna A., Joseph T. L., Wang J., Ong C., Ooi H. A., Sung J. C., Siew C. C.. & other authors ( 2013;). Growth inhibition of pathogenic bacteria by sulfonylurea herbicides. Antimicrob Agents Chemother57:1513–1517 [CrossRef][PubMed]
    [Google Scholar]
  18. Lechoczki-Krsjak S., Toth B., Kotai C., Martonosi I., Farady L., Kondrak L., Szabo-Hever A., Mesterhazy A.. ( 2008;). Chemical control of FHB in wheat with different nozzle types and fungicides. Cereal Res Commun36:677–681[CrossRef]
    [Google Scholar]
  19. Lee Y.-T., Ta H. T., Duggleby R. G.. ( 2005;). Cyclopropane-1,1-dicarboxylate is a slow-, tight-binding inhibitor of rice ketol-acid reductoisomerase. Plant Sci168:1035–1040 [CrossRef]
    [Google Scholar]
  20. Lee Y. T., Cui C. J., Chow E. W., Pue N., Lonhienne T., Wang J. G., Fraser J. A., Guddat L. W.. ( 2013;). Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase. J Med Chem56:210–219 [CrossRef][PubMed]
    [Google Scholar]
  21. Liu Z., Friesen T. L.. ( 2012;). Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. Methods Mol Biol835:365–375 [CrossRef][PubMed]
    [Google Scholar]
  22. Liu X. H., Chen P. Q., Wang B. L., Li Y. H., Wang S. H., Li Z. M.. ( 2007;). Synthesis, bioactivity, theoretical and molecular docking study of 1-cyano-N-substituted-cyclopropanecarboxamide as ketol-acid reductoisomerase inhibitor. Bioorg Med Chem Lett17:3784–3788 [CrossRef][PubMed]
    [Google Scholar]
  23. Liu X., Yin Y. N., Wu J. B., Jiang J. H., Ma Z. H.. ( 2010;). Identification and characterization of carbendazim-resistant isolates of Gibberella zeae . Plant Dis94:137–142
    [Google Scholar]
  24. Liu X., Fu J., Yun Y., Yin Y., Ma Z.. ( 2011;). A sterol C-14 reductase encoded by FgERG24B is responsible for the intrinsic resistance of Fusarium graminearum to amine fungicides. Microbiology157:1665–1675 [CrossRef][PubMed]
    [Google Scholar]
  25. Livak K. J., Schmittgen T. D.. ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔ C T method. Methods25:402–408 [CrossRef][PubMed]
    [Google Scholar]
  26. Macierzanka M., Plotka M., Pryputniewicz-Drobinska D., Lewandowska A., Lightowlers R., Marszalek J.. ( 2008;). Maintenance and stabilization of mtDNA can be facilitated by the DNA-binding activity of Ilv5p. Biochim Biophys Acta1783:107–117 [CrossRef][PubMed]
    [Google Scholar]
  27. Malz S., Grell M. N., Thrane C., Maier F. J., Rosager P., Felk A., Albertsen K. S., Salomon S., Bohn L.. & other authors ( 2005;). Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Fungal Genet Biol42:420–433 [CrossRef][PubMed]
    [Google Scholar]
  28. McCourt J. A., Duggleby R. G.. ( 2006;). Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids31:173–210 [CrossRef][PubMed]
    [Google Scholar]
  29. Merhej J., Boutigny A.-L., Pinson-Gadais L., Richard-Forget F., Barreau C.. ( 2010;). Acidic pH as a determinant of TRI gene expression and trichothecene B biosynthesis in Fusarium graminearum . Food Addit Contam Part A Chem Anal Control Expo Risk Assess27:710–717 [CrossRef][PubMed]
    [Google Scholar]
  30. Morya V. K., Kumari S., Kim E. K.. ( 2012;). Virtual screening and evaluation of Ketol-Acid Reducto-Isomerase (KARI) as a putative drug target for Aspergillosis. Clin Proteomics9:1 [CrossRef][PubMed]
    [Google Scholar]
  31. Oliver J. D., Kaye S. J., Tuckwell D., Johns A. E., Macdonald D. A., Livermore J., Warn P. A., Birch M., Bromley M. J.. ( 2012;). The Aspergillus fumigatus dihydroxyacid dehydratase Ilv3A/IlvC is required for full virulence. PLoS ONE7:e43559 [CrossRef][PubMed]
    [Google Scholar]
  32. Sasanya J. J., Hall C., Wolf-Hall C.. ( 2008;). Analysis of deoxynivalenol, masked deoxynivalenol, and Fusarium graminearum pigment in wheat samples, using liquid chromatography-UV-mass spectrometry. J Food Prot71:1205–1213[PubMed]
    [Google Scholar]
  33. Schulz A., Spönemann P., Köcher H., Wengenmayer F.. ( 1988;). The herbicidally active experimental compound Hoe 704 is a potent inhibitor of the enzyme acetolactate reductoisomerase. FEBS Lett238:375–378 [CrossRef][PubMed]
    [Google Scholar]
  34. Soleimany F., Jinap S., Abas F.. ( 2012;). Determination of mycotoxins in cereals by liquid chromatography tandem mass spectrometry. Food Chem130:1055–1060 [CrossRef]
    [Google Scholar]
  35. Tan S., Evans R., Singh B.. ( 2006;). Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops. Amino Acids30:195–204 [CrossRef][PubMed]
    [Google Scholar]
  36. Wang J., Zhou M.. ( 2002;). Monitoring and management of MBC resistance in Gibberella zeae . J Nanjing Agric Univ25:43–47
    [Google Scholar]
  37. Wu A. B., Li H. P., Zhao C. S., Liao Y. C.. ( 2005;). Comparative pathogenicity of Fusarium graminearum isolates from China revealed by wheat coleoptile and floret inoculations. Mycopathologia160:75–83 [CrossRef][PubMed]
    [Google Scholar]
  38. Yoshizawa F.. ( 2004;). Regulation of protein synthesis by branched-chain amino acids in vivo . Biochem Biophys Res Commun313:417–422 [CrossRef][PubMed]
    [Google Scholar]
  39. Zhan J., Mundt C. C., McDonald B. A.. ( 2001;). Using restriction fragment length polymorphisms to assess temporal variation and estimate the number of ascospores that initiate epidemics in field populations of Mycosphaerella graminicola . Phytopathology91:1011–1017 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075333-0
Loading
/content/journal/micro/10.1099/mic.0.075333-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error