Mechanism of fibroblast inflammatory responses to elastase Free

Abstract

Receptor tyrosine kinases, including the epidermal growth factor receptors (EGFR), are able to activate the mitogen-activated protein kinases (MAPK) via several adaptor proteins and protein kinases such as Raf. EGFR can be activated by a variety of extracellular stimuli including neutrophil elastase, but we are aware of no report as to whether produced elastase (PE) could elicit such signalling through EGFR activation. We sought to test the inference that PE modulates inflammatory responses in human lung fibroblasts and that the process occurs by activation of the EGFR/MAPK pathways. We utilized IL-8 cytokine expression as a pathway-specific end point measure of the fibroblast inflammatory response to PE. Western blot analysis was performed to detect phosphorylation of EGFR and signal transduction intermediates. Northern blot, real-time PCR, and ELISA methods were utilized to determine cytokine gene expression levels. We found that PE induces phosphorylation of the EGFR and the extracellular signal-regulated proteins (ERK1/2) of the MAPK pathway, and nuclear translocation of NF-κB. Furthermore, enzymically active PE enhances IL-8 mRNA and protein secretion. Pretreatment of the cells with specific inhibitors of EGFR, MAPK kinase and NF-κB markedly attenuated the PE-induced signal proteins phosphorylation and IL-8 gene expression and protein secretion. Collectively, the data show that PE produced by can modulate lung inflammation by exploiting the EGFR/ERK signalling cascades and enhancing IL-8 production in the lungs via NF-κB activation.

Funding
This study was supported by the:
  • the American Heart Association
  • the Pediatrics Department at the University of Texas Health Science Center at Tyler
  • National Institutes of Health (Award RO-1 65500 and RO-1 45018)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075325-0
2014-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/3/547.html?itemId=/content/journal/micro/10.1099/mic.0.075325-0&mimeType=html&fmt=ahah

References

  1. Allewelt M., Coleman F. T., Grout M., Priebe G. P., Pier G. B. ( 2000). Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect Immun 68:3998–4004 [View Article][PubMed]
    [Google Scholar]
  2. American Thoracic Society & European Respiratory Society 2000). Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. Am J Respir Crit Care Med 161:646–664 [View Article][PubMed]
    [Google Scholar]
  3. Armstrong D. S., Grimwood K., Carlin J. B., Carzino R., Gutièrrez J. P., Hull J., Olinsky A., Phelan E. M., Robertson C. F., Phelan P. D. ( 1997). Lower airway inflammation in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 156:1197–1204 [View Article][PubMed]
    [Google Scholar]
  4. Azghani A. O. ( 1996). Pseudomonas aeruginosa and epithelial permeability: role of virulence factors elastase and exotoxin A. Am J Respir Cell Mol Biol 15:132–140 [View Article][PubMed]
    [Google Scholar]
  5. Azghani A. O., Connelly J. C., Peterson B. T., Gray L. D., Collins M. L., Johnson A. R. ( 1990). Effects of Pseudomonas aeruginosa elastase on alveolar epithelial permeability in guinea pigs. Infect Immun 58:433–438[PubMed]
    [Google Scholar]
  6. Azghani A. O., Bedinghaus T., Klein R. ( 2000a). Detection of elastase from Pseudomonas aeruginosa in sputum and its potential role in epithelial cell permeability. Lung 178:181–189[PubMed] [CrossRef]
    [Google Scholar]
  7. Azghani A. O., Miller E. J., Peterson B. T. ( 2000b). Virulence factors from Pseudomonas aeruginosa increase lung epithelial permeability. Lung 178:261–269 [View Article][PubMed]
    [Google Scholar]
  8. Azghani A. O., Baker J. W., Shetty S., Miller E. J., Bhat G. J. ( 2002a). Pseudomonas aeruginosa elastase stimulates ERK signaling pathway and enhances IL-8 production by alveolar epithelial cells in culture. Inflamm Res 51:506–510 [View Article][PubMed]
    [Google Scholar]
  9. Azghani A. O., Idell S., Bains M., Hancock R. E. W. ( 2002b). Pseudomonas aeruginosa outer membrane protein F is an adhesin in bacterial binding to lung epithelial cells in culture. Microb Pathog 33:109–114 [View Article][PubMed]
    [Google Scholar]
  10. Bédard M., McClure C. D., Schiller N. L., Francoeur C., Cantin A., Denis M. ( 1993). Release of interleukin-8, interleukin-6, and colony-stimulating factors by upper airway epithelial cells: implications for cystic fibrosis. Am J Respir Cell Mol Biol 9:455–462 [View Article][PubMed]
    [Google Scholar]
  11. Behzad A. R., Chu F., Walker D. C. ( 1996). Fibroblasts are in a position to provide directional information to migrating neutrophils during pneumonia in rabbit lungs. Microvasc Res 51:303–316 [View Article][PubMed]
    [Google Scholar]
  12. Blackwell T. S., Christman J. W. ( 1996). Sepsis and cytokines: current status. Br J Anaesth 77:110–117 [View Article][PubMed]
    [Google Scholar]
  13. Blackwell T. S., Stecenko A. A., Christman J. W. ( 2001). Dysregulated NF-kappaB activation in cystic fibrosis: evidence for a primary inflammatory disorder. Am J Physiol Lung Cell Mol Physiol 281:L69–L70[PubMed]
    [Google Scholar]
  14. Cobb M. H. ( 1999). MAP kinase pathways. Prog Biophys Mol Biol 71:479–500 [View Article][PubMed]
    [Google Scholar]
  15. Dakin C. J., Numa A. H., Wang H., Morton J. R., Vertzyas C. C., Henry R. L. ( 2002). Inflammation, infection, and pulmonary function in infants and young children with cystic fibrosis. Am J Respir Crit Care Med 165:904–910 [View Article][PubMed]
    [Google Scholar]
  16. de Kievit T. R., Iglewski B. H. ( 2000). Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849 [View Article][PubMed]
    [Google Scholar]
  17. DiCamillo S. J., Carreras I., Panchenko M. V., Stone P. J., Nugent M. A., Foster J. A., Panchenko M. P. ( 2002). Elastase-released epidermal growth factor recruits epidermal growth factor receptor and extracellular signal-regulated kinases to down-regulate tropoelastin mRNA in lung fibroblasts. J Biol Chem 277:18938–18946 [View Article][PubMed]
    [Google Scholar]
  18. DiMango E., Zar H. J., Bryan R., Prince A. ( 1995). Diverse Pseudomonas aeruginosa gene products stimulate respiratory epithelial cells to produce interleukin-8. J Clin Invest 96:2204–2210 [View Article][PubMed]
    [Google Scholar]
  19. Döring G., Goldstein W., Röll A., Schiøtz P. O., Høiby N., Botzenhart K. ( 1985). Role of Pseudomonas aeruginosa exoenzymes in lung infections of patients with cystic fibrosis. Infect Immun 49:557–562[PubMed]
    [Google Scholar]
  20. Dulon S., Leduc D., Cottrell G. S., D'Alayer J., Hansen K. K., Bunnett N. W., Hollenberg M. D., Pidard D., Chignard M. ( 2005). Pseudomonas aeruginosa elastase disables PAR2 in respiratory epithelial cells. Am Respir Cell Mol Bio 32:411–419 [CrossRef]
    [Google Scholar]
  21. Gauldie J., Jordana M., Cox G., Ohtoshi T., Dolovich J., Denburg J. ( 1992). Fibroblasts and other structural cells in airway inflammation. Am Rev Respir Dis 145:S14–S17 [View Article][PubMed]
    [Google Scholar]
  22. Gschwind A., Prenzel N., Ullrich A. ( 2002). Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation. Cancer Res 62:6329–6336[PubMed]
    [Google Scholar]
  23. Gumbiner B. ( 1987). Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol 253:C749–C758[PubMed]
    [Google Scholar]
  24. Hack C. E., Hart M., van Schijndel R. J., Eerenberg A. J., Nuijens J. H., Thijs L. G., Aarden L. A. ( 1992). Interleukin-8 in sepsis: relation to shock and inflammatory mediators. Infect Immun 60:2835–2842[PubMed]
    [Google Scholar]
  25. Hjortoe G. M., Petersen L. C., Albrektsen T., Sorensen B. B., Norby P. L., Mandal S. K., Pendurthi U. R., Rao L. V. M. ( 2004). Tissue factor-factor VIIa-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood 103:3029–3037 [View Article][PubMed]
    [Google Scholar]
  26. Høiby N., Krogh Johansen H., Moser C., Song Z., Ciofu O., Kharazmi A. ( 2001). Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3:23–35 [View Article][PubMed]
    [Google Scholar]
  27. Hsueh P. R., Chen M. L., Sun C. C., Chen W. H., Pan H. J., Yang L. S., Chang S. C., Ho S. W., Lee C. Y. & other authors ( 2002). Antimicrobial drug resistance in pathogens causing nosocomial infections at a university hospital in Taiwan, 1981-1999. Emerg Infect Dis 8:63–68 [View Article][PubMed]
    [Google Scholar]
  28. Ju C. H., Chockalingam A., Leifer C. A. ( 2009). Early response of mucosal epithelial cells during Toxoplasma gondii infection. J Immunol 183:7420–7427 [View Article][PubMed]
    [Google Scholar]
  29. Kawabata A., Saifeddine M., al-Ani B., Hollenberg M. D. ( 1997). Protease-activated receptors: development of agonists selective for receptors triggered by either thrombin (PAR1) or trypsin (PAR2). Proc West Pharmacol Soc 40:49–51[PubMed]
    [Google Scholar]
  30. Kawaharajo K., Homma J. Y., Aoyama Y., Morihara K. ( 1975). In vivo studies on protease and elastase from Pseudomonas aeruginosa. . Jpn J Exp Med 45:89–100[PubMed]
    [Google Scholar]
  31. Kelley J., Fabisiak J. P., Hawes K., Absher M. ( 1991a). Cytokine signaling in lung: transforming growth factor-β secretion by lung fibroblasts. Am J Physiol 260:L123–L128[PubMed]
    [Google Scholar]
  32. Kelley J., Kovacs E. J., Nicholson K., Fabisiak J. P. ( 1991b). Transforming growth factor-β production by lung macrophages and fibroblasts. Chest 99:Suppl.85S–86S[PubMed]
    [Google Scholar]
  33. Kessler E., Spierer A. ( 1984). Inhibition by phosphoramidon of Pseudomonas aeruginosa elastase injected intracorneally in rabbit eyes. Curr Eye Res 3:1075–1078 [View Article][PubMed]
    [Google Scholar]
  34. Kida Y., Inoue H., Shimizu T., Kuwano K. ( 2007). Serratia marcescens serralysin induces inflammatory responses through protease-activated receptor 2. Infect Immun 75:164–174 [View Article][PubMed]
    [Google Scholar]
  35. Kon Y., Tsukada H., Hasegawa T., Igarashi K., Wada K., Suzuki E., Arakawa M., Gejyo F. ( 1999). The role of Pseudomonas aeruginosa elastase as a potent inflammatory factor in a rat air pouch inflammation model. FEMS Immunol Med Microbiol 25:313–321 [View Article][PubMed]
    [Google Scholar]
  36. Kumar R., King R. J., Martin H. M., Hanahan D. J. ( 1987). Metabolism of platelet-activating factor (alkylacetylphosphocholine) by type-II epithelial cells and fibroblasts from rat lungs. Biochim Biophys Acta 917:33–41 [View Article][PubMed]
    [Google Scholar]
  37. Kumasaka T., Doyle N. A., Quinlan W. M., Graham L., Doerschuk C. M. ( 1996). Role of CD 11/CD 18 in neutrophil emigration during acute and recurrent Pseudomonas aeruginosa-induced pneumonia in rabbits. Am J Pathol 148:1297–1305[PubMed]
    [Google Scholar]
  38. Li J. D., Feng W., Gallup M., Kim J. H., Gum J., Kim Y., Basbaum C. ( 1998). Activation of NF-κB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc Natl Acad Sci U S A 95:5718–5723 [View Article][PubMed]
    [Google Scholar]
  39. Li J., Johnson X. D., Iazvovskaia S., Tan A., Lin A., Hershenson M. B. ( 2003). Signaling intermediates required for NF-kappa B activation and IL-8 expression in CF bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 284:L307–L315[PubMed] [CrossRef]
    [Google Scholar]
  40. Martinez J. A., King T. E. J. Jr, Brown K., Jennings C. A., Borish L., Mortenson R. L., Khan T. Z., Bost T. W., Riches D. W. ( 1997). Increased expression of the interleukin-10 gene by alveolar macrophages in interstitial lung disease. Am J Physiol 273:L676–L683[PubMed]
    [Google Scholar]
  41. Mathee K., Ciofu O., Sternberg C., Lindum P. W., Campbell J. I. A., Jensen P., Johnsen A. H., Givskov M., Ohman D. E. & other authors ( 1999). Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357 [View Article][PubMed]
    [Google Scholar]
  42. McDonald J. A. ( 1991). Idiopathic pulmonary fibrosis. A paradigm for lung injury and repair. Chest 99:Suppl.87S–93S [View Article][PubMed]
    [Google Scholar]
  43. Meyer-Hoffert U., Wingertszahn J., Wiedow O. ( 2004). Human leukocyte elastase induces keratinocyte proliferation by epidermal growth factor receptor activation. J Invest Dermatol 123:338–345 [View Article][PubMed]
    [Google Scholar]
  44. Miller E. J., Cohen A. B., Matthay M. A. ( 1996). Increased interleukin-8 concentrations in the pulmonary edema fluid of patients with acute respiratory distress syndrome from sepsis. Crit Care Med 24:1448–1454 [View Article][PubMed]
    [Google Scholar]
  45. Noah T. L., Black H. R., Cheng P. W., Wood R. E., Leigh M. W. ( 1997). Nasal and bronchoalveolar lavage fluid cytokines in early cystic fibrosis. J Infect Dis 175:638–647 [View Article][PubMed]
    [Google Scholar]
  46. Parsons P. E., Sugahara K., Cott G. R., Mason R. J., Henson P. M. ( 1987). The effect of neutrophil migration and prolonged neutrophil contact on epithelial permeability. Am J Pathol 129:302–312[PubMed]
    [Google Scholar]
  47. Pearson J. P., Feldman M., Iglewski B. H., Prince A. ( 2000). Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68:4331–4334 [View Article][PubMed]
    [Google Scholar]
  48. Pier G. B. ( 2000). Peptides, Pseudomonas aeruginosa, polysaccharides and lipopolysaccharides players in the predicament of cystic fibrosis patients. Trends Microbiol 8:247–250, discussion 250–251 [View Article][PubMed]
    [Google Scholar]
  49. Poynter M. E., Irvin C. G., Janssen-Heininger Y. M. W. ( 2003). A prominent role for airway epithelial NF-kappa B activation in lipopolysaccharide-induced airway inflammation. J Immunol 170:6257–6265[PubMed] [CrossRef]
    [Google Scholar]
  50. Pukhalsky A. L., Kapranov N. I., Kalashnikova E. A., Shmarina G. V., Shabalova L. A., Kokarovtseva S. N., Pukhalskaya D. A., Kashirskaja N. J., Simonova O. I. ( 1999). Inflammatory markers in cystic fibrosis patients with lung Pseudomonas aeruginosa infection. Mediators Inflamm 8:159–167 [View Article][PubMed]
    [Google Scholar]
  51. Rejman J., Di Gioia S., Bragonzi A., Conese M. ( 2007). Pseudomonas aeruginosa infection destroys the barrier function of lung epithelium and enhances polyplex-mediated transfection. Hum Gene Ther 18:642–652 [View Article][PubMed]
    [Google Scholar]
  52. Rosenfeld M., Gibson R. L., McNamara S., Emerson J., Burns J. L., Castile R., Hiatt P., McCoy K., Wilson C. B. & other authors ( 2001). Early pulmonary infection, inflammation, and clinical outcomes in infants with cystic fibrosis. Pediatr Pulmonol 32:356–366 [View Article][PubMed]
    [Google Scholar]
  53. Roudabush F. L., Pierce K. L., Maudsley S., Khan K. D., Luttrell L. M. ( 2000). Transactivation of the EGF receptor mediates IGF-1-stimulated Shc phosphorylation and ERK1/2 activation in COS-7 cells. J Biol Chem 275:22583–22589 [View Article][PubMed]
    [Google Scholar]
  54. Rudack C., Sachse F., Albert N., Becker K., von Eiff C. ( 2009). Immunomodulation of nasal epithelial cells by Staphylococcus aureus-derived serine proteases. J Immunol 183:7592–7601 [View Article][PubMed]
    [Google Scholar]
  55. Sadikot R. T., Christman J. W., Blackwell T. S. ( 2000). Chemokines and chemokine receptors in pulmonary diseases. Curr Opin Investig Drugs 1:314–320[PubMed]
    [Google Scholar]
  56. Sakamaki F., Ishizaka A., Urano T., Sayama K., Nakamura H., Terashima T., Waki Y., Tasaka S., Hasegawa N. & other authors ( 1996). Effect of a specific neutrophil elastase inhibitor, ONO-5046, on endotoxin-induced acute lung injury. Am J Respir Crit Care Med 153:391–397 [View Article][PubMed]
    [Google Scholar]
  57. Schaller-Bals S., Schulze A., Bals R. ( 2002). Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am J Respir Crit Care Med 165:992–995 [View Article][PubMed]
    [Google Scholar]
  58. Shetty S., Idell S. ( 1998). A urokinase receptor mRNA binding protein from rabbit lung fibroblasts and mesothelial cells. Am J Physiol 274:L871–L882[PubMed]
    [Google Scholar]
  59. Smith R. S., Fedyk E. R., Springer T. A., Mukaida N., Iglewski B. H., Phipps R. P. ( 2001). IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. J Immunol 167:366–374[PubMed] [CrossRef]
    [Google Scholar]
  60. Sokol P. A. F., Kooi C., Hodges R. S. F., Cachia P., Woods D. E. ( 2000). Immunization with a Pseudomonas aeruginosa elastase peptide reduces severity of experimental lung infections due to P. aeruginosa or Burkholderia cepacia. . J Infect Dis 181:1682–1692 [View Article][PubMed]
    [Google Scholar]
  61. Tang H., Kays M., Prince A. ( 1995). Role of Pseudomonas aeruginosa pili in acute pulmonary infection. Infect Immun 63:1278–1285[PubMed]
    [Google Scholar]
  62. TenHoor T., Mannino D. M., Moss M. ( 2001). Risk factors for ARDS in the United States: analysis of the 1993 National Mortality Followback Study. Chest 119:1179–1184 [View Article][PubMed]
    [Google Scholar]
  63. Wang Y. Z., Zhang P., Rice A. B., Bonner J. C. ( 2000). Regulation of interleukin-1β-induced platelet-derived growth factor receptor-α expression in rat pulmonary myofibroblasts by p38 mitogen-activated protein kinase. J Biol Chem 275:22550–22557 [View Article][PubMed]
    [Google Scholar]
  64. Witko-Sarsat V., Sermet-Gaudelus I., Lenoir G., Descamps-Latscha B. ( 1999). Inflammation and CFTR: might neutrophils be the key in cystic fibrosis. Mediators Inflamm 8:7–11 [View Article][PubMed]
    [Google Scholar]
  65. Wong K. K., Poole K., Gotoh N., Hancock R. E. ( 1997). Influence of OprM expression on multiple antibiotic resistance in Pseudomonas aeruginosa. . Antimicrob Agents Chemother 41:2009–2012[PubMed]
    [Google Scholar]
  66. Woods D. E., Cryz S. J., Friedman R. L., Iglewski B. H. ( 1982). Contribution of toxin A and elastase to virulence of Pseudomonas aeruginosa in chronic lung infections of rats. Infect Immun 36:1223–1228[PubMed]
    [Google Scholar]
  67. Woods D. E., Lam J. S., Paranchych W., Speert D. P., Campbell M., Godfrey A. J. ( 1997). Correlation of Pseudomonas aeruginosa virulence factors from clinical and environmental isolates with pathogenicity in the neutropenic mouse. Can J Microbiol 43:541–551 [View Article][PubMed]
    [Google Scholar]
  68. Yanagihara K., Tomono K., Kaneko Y., Miyazaki Y., Tsukamoto K., Hirakata Y., Mukae H., Kadota J., Murata I., Kohno S. ( 2003). Role of elastase in a mouse model of chronic respiratory Pseudomonas aeruginosa infection that mimics diffuse panbronchiolitis. J Med Microbiol 52:531–535 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075325-0
Loading
/content/journal/micro/10.1099/mic.0.075325-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed