1887

Abstract

During the colonization of surfaces, bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V ( gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the mutant (BW9091) and triple mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant Ind did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the oxygen tension. In conclusion, it was proven that bacterial interaction with abiotic surfaces can lead to SOS induction and associated filamentation. Moreover, we verified that endonuclease V is involved in biofilm formation.

Funding
This study was supported by the:
  • FAPERJ
  • CNPq
  • CAPES
  • SR-2/UERJ
  • Brazilian Ministry of Science and Technology
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075317-0
2014-09-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/9/1964.html?itemId=/content/journal/micro/10.1099/mic.0.075317-0&mimeType=html&fmt=ahah

References

  1. Allegrucci M., Sauer K. ( 2007). Characterization of colony morphology variants isolated from Streptococcus pneumoniae biofilms. J Bacteriol 189:2030–2038 [View Article][PubMed]
    [Google Scholar]
  2. Alves J. R., Pereira A. C. M., Souza M. C., Costa S. B., Pinto A. S., Mattos-Guaraldi A. L., Hirata-Júnior R., Rosa A. C. P., Asad L. M. B. O. ( 2010). Iron-limited condition modulates biofilm formation and interaction with human epithelial cells of enteroaggregative Escherichia coli (EAEC). J Appl Microbiol 108:246–255 [View Article][PubMed]
    [Google Scholar]
  3. Asad L. M. B. O., Asad N. R., Silva A. B., Almeida C. E. B., Leitão A. C. ( 1997). Role of SOS and OxyR systems in the repair of Escherichia coli submitted to hydrogen peroxide under low iron conditions. Biochimie 79:359–364 [View Article][PubMed]
    [Google Scholar]
  4. Beloin C., Roux A., Ghigo J. M. ( 2008). Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289[PubMed]
    [Google Scholar]
  5. Bjergbaek L. A., Haagensen J. A. J., Reisner A., Molin S., Roslev P. ( 2007). Effect of oxygen and growth medium on in vitro biofilm formation by Escherichia coli. Biofilms 3:1–10
    [Google Scholar]
  6. Boles B. R., Singh P. K. ( 2008). Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci U S A 105:12503–12508 [View Article][PubMed]
    [Google Scholar]
  7. Boles B. R., Thoendel M., Singh P. K. ( 2004). Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci U S A 101:16630–16635 [View Article][PubMed]
    [Google Scholar]
  8. Cabellos-Avelar T., Souza V., Membrillo-Hernández J. ( 2006). Spent media from cultures of environmental isolates of Escherichia coli can suppress the deficiency of biofilm formation under anoxic conditions of laboratory E. coli strains. FEMS Microbiol Ecol 58:414–424 [View Article][PubMed]
    [Google Scholar]
  9. Cao W. ( 2013). Endonuclease V: an unusual enzyme for repair of DNA deamination. Cell Mol Life Sci 70:3145–3156 [View Article][PubMed]
    [Google Scholar]
  10. Colón-González M., Méndez-Ortiz M. M., Membrillo-Hernández J. ( 2004). Anaerobic growth does not support biofilm formation in Escherichia coli K-12. Res Microbiol 155:514–521 [View Article][PubMed]
    [Google Scholar]
  11. Costa S. B., Campos A. C. C., Pereira A. C. M., de Mattos-Guaraldi A. L., Hirata Júnior R., Rosa A. C. P., Asad L. M. B. O. ( 2012). The role of DNA base excision repair in filamentation in Escherichia coli K-12 adhered to epithelial HEp-2 cells. Antonie van Leeuwenhoek 101:423–431 [View Article][PubMed]
    [Google Scholar]
  12. Déziel E., Comeau Y., Villemur R. ( 2001). Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183:1195–1204 [View Article][PubMed]
    [Google Scholar]
  13. Dong T., Chiang S. M., Joyce C., Yu R., Schellhorn H. E. ( 2009). Polymorphism and selection of rpoS in pathogenic Escherichia coli. BMC Microbiol 9:118 [View Article][PubMed]
    [Google Scholar]
  14. Eisen J. A., Hanawalt P. C. ( 1999). A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res 435:171–213 [View Article][PubMed]
    [Google Scholar]
  15. Fernández de Henestrosa A. R., Ogi T., Aoyagi S., Chafin D., Hayes J. J., Ohmori H., Woodgate R. ( 2000). Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35:1560–1572 [View Article][PubMed]
    [Google Scholar]
  16. Friedberg E. C., Walker G. C., Siede W., Wood R. D., Schultz R. A., Ellenberger T. ( 2006). DNA Repair and Mutagenesis Washinton, DC: American Society for Microbiology;
    [Google Scholar]
  17. Geier H., Mostowy S., Cangelosi G. A., Behr M. A., Ford T. E. ( 2008). Autoinducer-2 triggers the oxidative stress response in Mycobacterium avium, leading to biofilm formation. Appl Environ Microbiol 74:1798–1804 [View Article][PubMed]
    [Google Scholar]
  18. Ghannoum M., O’Toole G. A. (editors) ( 2001). Microbial Biofilms Washington, DC: American Society for Microbiology;
    [Google Scholar]
  19. Gotoh H., Zhang Y., Dallo S. F., Hong S., Kasaraneni N., Weitao T. ( 2008). Pseudomonas aeruginosa, under DNA replication inhibition, tends to form biofilms via Arr. Res Microbiol 159:294–302 [View Article][PubMed]
    [Google Scholar]
  20. Gotoh H., Kasaraneni N., Devineni N., Dallo S. F., Weitao T. ( 2010). SOS involvement in stress-inducible biofilm formation. Biofouling 26:603–611 [View Article][PubMed]
    [Google Scholar]
  21. Guo G., Weiss B. ( 1998). Endonuclease V (nfi) mutant of Escherichia coli K-12. J Bacteriol 180:46–51[PubMed]
    [Google Scholar]
  22. Higashitani A., Higashitani N., Horiuchi K. ( 1995). A cell division inhibitor SulA of Escherichia coli directly interacts with FtsZ through GTP hydrolysis. Biochem Biophys Res Commun 209:198–204 [View Article][PubMed]
    [Google Scholar]
  23. Hoffman L. R., D’Argenio D. A., MacCoss M. J., Zhang Z., Jones R. A., Miller S. I. ( 2005). Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436:1171–1175 [View Article][PubMed]
    [Google Scholar]
  24. Hung D. T., Zhu J., Sturtevant D., Mekalanos J. J. ( 2006). Bile acids stimulate biofilm formation in Vibrio cholerae. Mol Microbiol 59:193–201 [View Article][PubMed]
    [Google Scholar]
  25. Imlay J. A. ( 2003). Pathways of oxidative damage. Annu Rev Microbiol 57:395–418 [View Article][PubMed]
    [Google Scholar]
  26. Janion C., Sikora A., Nowosielska A., Grzesiuk E. ( 2003). E. coli BW535, a triple mutant for the DNA repair genes xth, nth, and nfo, chronically induces the SOS response. Environ Mol Mutagen 41:237–242 [View Article][PubMed]
    [Google Scholar]
  27. Justice S. S., Hunstad D. A., Seed P. C., Hultgren S. J. ( 2006). Filamentation by Escherichia coli subverts innate defenses during urinary tract infection. Proc Natl Acad Sci U S A 103:19884–19889 [View Article][PubMed]
    [Google Scholar]
  28. Justice S. S., Hunstad D. A., Cegelski L., Hultgren S. J. ( 2008). Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 6:162–168 [View Article][PubMed]
    [Google Scholar]
  29. Karatan E., Watnick P. ( 2009). Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347 [View Article][PubMed]
    [Google Scholar]
  30. Kirisits M. J., Prost L., Starkey M., Parsek M. R. ( 2005). Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71:4809–4821 [View Article][PubMed]
    [Google Scholar]
  31. Kohanski M. A., Dwyer D. J., Hayete B., Lawrence C. A., Collins J. J. ( 2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810 [View Article][PubMed]
    [Google Scholar]
  32. Linares J. F., Gustafsson I., Baquero F., Martinez J. L. ( 2006). Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A 103:19484–19489 [View Article][PubMed]
    [Google Scholar]
  33. Mohamed J. A., Huang D. B., Jiang Z. D., DuPont H. L., Nataro J. P., Belkind-Gerson J., Okhuysen P. C. ( 2007). Association of putative enteroaggregative Escherichia coli virulence genes and biofilm production in isolates from travelers to developing countries. J Clin Microbiol 45:121–126 [View Article][PubMed]
    [Google Scholar]
  34. Müsken A., Bielaszewska M., Greune L., Schweppe C. H., Müthing J., Schmidt H., Schmidt M. A., Karch H., Zhang W. ( 2008). Anaerobic conditions promote expression of Sfp fimbriae and adherence of sorbitol-fermenting enterohemorrhagic Escherichia coli O157:NM to human intestinal epithelial cells. Appl Environ Microbiol 74:1087–1093 [View Article][PubMed]
    [Google Scholar]
  35. Nataro J. P., Kaper J. B., Robins-Browne R., Prado V., Vial P., Levine M. M. ( 1987). Patterns of adherence of diarrheagenic Escherichia coli to HEp-2 cells. Pediatr Infect Dis J 6:829–831 [View Article][PubMed]
    [Google Scholar]
  36. Ofek I., Hasty D. L., Doyle R. J. (editors) ( 2003). Role of adhesion in biofilm formation. Bacterial Adhesion63–96 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Palmer R. J. Jr, Stoodley P. ( 2007). Biofilms 2007: broadened horizons and new emphases. J Bacteriol 189:7948–7960 [View Article][PubMed]
    [Google Scholar]
  38. Quillardet P., Hofnung M. ( 1985). The SOS Chromotest, a colorimetric bacterial assay for genotoxins: procedures. Mutat Res 147:65–78 [View Article][PubMed]
    [Google Scholar]
  39. Rendón M. A., Saldaña Z., Erdem A. L., Monteiro-Neto V., Vázquez A., Kaper J. B., Puente J. L., Girón J. A. ( 2007). Commensal and pathogenic Escherichia coli use a common pilus adherence factor for epithelial cell colonization. Proc Natl Acad Sci U S A 104:10637–10642 [View Article][PubMed]
    [Google Scholar]
  40. Sakai A., Nakanishi M., Yoshiyama K., Maki H. ( 2006). Impact of reactive oxygen species on spontaneous mutagenesis in Escherichia coli. Genes Cells 11:767–778 [View Article][PubMed]
    [Google Scholar]
  41. Schembri M. A., Klemm P. ( 2001). Coordinate gene regulation by fimbriae-induced signal transduction. EMBO J 20:3074–3081 [View Article][PubMed]
    [Google Scholar]
  42. Sheikh J., Hicks S., Dall’Agnol M., Phillips A. D., Nataro J. P. ( 2001). Roles for Fis and YafK in biofilm formation by enteroaggregative Escherichia coli. Mol Microbiol 41:983–997 [View Article][PubMed]
    [Google Scholar]
  43. Suvarnapunya A. E., Lagassé H. A., Stein M. A. ( 2003). The role of DNA base excision repair in the pathogenesis of Salmonella enterica serovar Typhimurium. Mol Microbiol 48:549–559 [View Article][PubMed]
    [Google Scholar]
  44. Ulett G. C., Webb R. I., Schembri M. A. ( 2006). Antigen-43-mediated autoaggregation impairs motility in Escherichia coli. Microbiology 152:2101–2110 [View Article][PubMed]
    [Google Scholar]
  45. van der Veen S., Abee T. ( 2010). Dependence of continuous-flow biofilm formation by Listeria monocytogenes EGD-e on SOS response factor YneA. Appl Environ Microbiol 76:1992–1995 [View Article][PubMed]
    [Google Scholar]
  46. Waite R. D., Struthers J. K., Dowson C. G. ( 2001). Spontaneous sequence duplication within an open reading frame of the pneumococcal type 3 capsule locus causes high-frequency phase variation. Mol Microbiol 42:1223–1232 [View Article][PubMed]
    [Google Scholar]
  47. Walker G. C. ( 1985). Inducible DNA repair systems. Annu Rev Biochem 54:425–457 [View Article][PubMed]
    [Google Scholar]
  48. Wallace S. S. ( 1997). Oxidative damage to DNA and its repair. Oxidative Stress and the Molecular Biology of Antioxidant Defenses49–90 Scandalios J. G. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  49. Weiss B. ( 2001). Endonuclease V of Escherichia coli prevents mutations from nitrosative deamination during nitrate/nitrite respiration. Mutat Res 461:301–309 [View Article][PubMed]
    [Google Scholar]
  50. Yarwood J. M., Paquette K. M., Tikh I. B., Volper E. M., Greenberg E. P. ( 2007). Generation of virulence factor variants in Staphylococcus aureus biofilms. J Bacteriol 189:7961–7967 [View Article][PubMed]
    [Google Scholar]
/content/journal/micro/10.1099/mic.0.075317-0
Loading
/content/journal/micro/10.1099/mic.0.075317-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error