Nanoscale characterization of effect of -arginine on biofilm adhesion by atomic force microscopy Free

Abstract

A major aetiological factor of dental caries is the pathology of the dental plaque biofilms. The amino acid -arginine (Arg) is found naturally in saliva as a free molecule or as a part of salivary peptides and proteins. Plaque bacteria metabolize Arg to produce alkali and neutralize glycolytic acids, promoting a less cariogenous oral microbiome. Here, we explored an alternative and complementary mechanism of action of Arg using atomic force microscopy. The nanomechanical properties of biofilm extracellular matrix were characterized under physiological buffer conditions. We report the effect of Arg on the adhesive behaviour and structural properties of extracellular polysaccharides in biofilms. High-resolution imaging of biofilm surfaces can reveal additional structural information on bacterial cells embedded within the surrounding extracellular matrix. A dense extracellular matrix was observed in biofilms without Arg compared to those grown in the presence of Arg. biofilms grown in the presence of Arg could influence the production and/or composition of extracellular membrane glucans and thereby affect their adhesion properties. Our results suggest that the presence of Arg in the oral cavity could influence the adhesion properties of to the tooth surface.

Funding
This study was supported by the:
  • Colgate-Palmolive Company
  • International Center for Materials Nanoarchitectonics Satellite (MANA)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075267-0
2014-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/7/1466.html?itemId=/content/journal/micro/10.1099/mic.0.075267-0&mimeType=html&fmt=ahah

References

  1. Arce F. T., Carlson R., Monds J., Veeh R., Hu F. Z., Stewart P. S., Lal R., Ehrlich G. D., Avci R. ( 2009). Nanoscale structural and mechanical properties of nontypeable Haemophilus influenzae biofilms. J Bacteriol 191:2512–2520 [View Article][PubMed]
    [Google Scholar]
  2. Binnig G., Quate C. F., Gerber C. ( 1986). Atomic force microscope. Phys Rev Lett 56:930–933 [View Article][PubMed]
    [Google Scholar]
  3. Burne R. A., Marquis R. E. ( 2000). Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193:1–6 [View Article][PubMed]
    [Google Scholar]
  4. Busscher H. J., van de Belt-Gritter B., Dijkstra R. J., Norde W., Petersen F. C., Scheie A. A., van der Mei H. C. ( 2007). Intermolecular forces and enthalpies in the adhesion of Streptococcus mutans and an antigen I/II-deficient mutant to laminin films. J Bacteriol 189:2988–2995 [View Article][PubMed]
    [Google Scholar]
  5. Cantore R., Petrou I., Lavender S., Santarpia P., Liu Z., Gittins E., Vandeven M., Cummins D., Sullivan R., Utgikar N. ( 2013). In situ clinical effects of new dentifrices containing 1.5% arginine and fluoride on enamel de- and remineralization and plaque metabolism. J Clin Dent 24:A32–A44 [View Article][PubMed]
    [Google Scholar]
  6. Cross S. E., Kreth J., Zhu L., Qi F., Pelling A. E., Shi W., Gimzewski J. K. ( 2006). Atomic force microscopy study of the structure-function relationships of the biofilm-forming bacterium Streptococcus mutans . Nanotechnology 17:S1–S7 [View Article][PubMed]
    [Google Scholar]
  7. Cross S. E., Kreth J., Zhu L., Sullivan R., Shi W., Qi F., Gimzewski J. K. ( 2007). Nanomechanical properties of glucans and associated cell-surface adhesion of Streptococcus mutans probed by atomic force microscopy under in situ conditions. Microbiology 153:3124–3132 [View Article][PubMed]
    [Google Scholar]
  8. Dufrêne Y. F. ( 2003). Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology. Curr Opin Microbiol 6:317–323 [View Article][PubMed]
    [Google Scholar]
  9. Dufrêne Y. F. ( 2008). Towards nanomicrobiology using atomic force microscopy. Nat Rev Microbiol 6:674–680 [View Article][PubMed]
    [Google Scholar]
  10. Dupres V., Menozzi F. D., Locht C., Clare B. H., Abbott N. L., Cuenot S., Bompard C., Raze D., Dufrêne Y. F. ( 2005). Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat Methods 2:515–520 [View Article][PubMed]
    [Google Scholar]
  11. García-Godoy F., Hicks M. J. ( 2008). Maintaining the integrity of the enamel surface: the role of dental biofilm, saliva and preventive agents in enamel demineralization and remineralization. J Am Dent Assoc 139:Suppl.25S–34S [View Article][PubMed]
    [Google Scholar]
  12. Harimawan A., Rajasekar A., Ting Y. P. ( 2011). Bacteria attachment to surfaces – AFM force spectroscopy and physicochemical analyses. J Colloid Interface Sci 364:213–218 [View Article][PubMed]
    [Google Scholar]
  13. He J., Yarbrough D. K., Kreth J., Anderson M. H., Shi W., Eckert R. ( 2010). Systematic approach to optimizing specifically targeted antimicrobial peptides against Streptococcus mutans . Antimicrob Agents Chemother 54:2143–2151 [View Article][PubMed]
    [Google Scholar]
  14. Hicks J., Garcia-Godoy F., Flaitz C. ( 2003). Biological factors in dental caries: role of saliva and dental plaque in the dynamic process of demineralization and remineralization (part 1). J Clin Pediatr Dent 28:47–52[PubMed] [CrossRef]
    [Google Scholar]
  15. Jeon J. G., Rosalen P. L., Falsetta M. L., Koo H. ( 2011). Natural products in caries research: current (limited) knowledge, challenges and future perspective. Caries Res 45:243–263 [View Article][PubMed]
    [Google Scholar]
  16. Jorand F., Boué-Bigne F., Block J. C., Urbain V. ( 1998). Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances. Water Sci Technol 37:307–315 [View Article]
    [Google Scholar]
  17. Lang C., Böttner M., Holz C., Veen M., Ryser M., Reindl A., Pompejus M., Tanzer J. M. ( 2010). Specific Lactobacillus/Mutans Streptococcus co-aggregation. J Dent Res 89:175–179 [View Article][PubMed]
    [Google Scholar]
  18. Lee Y. H., Zimmerman J. N., Custodio W., Xiao Y., Basiri T., Hatibovic-Kofman S., Siqueira W. L. ( 2013). Proteomic evaluation of acquired enamel pellicle during in vivo formation. PLoS ONE 8:e67919 [View Article][PubMed]
    [Google Scholar]
  19. Li L., Finnegan M. B., Özkan S., Kim Y., Lillehoj P. B., Ho C.-M., Lux R., Mito R., Loewy Z., Shi W. ( 2010). In vitro study of biofilm formation and effectiveness of antimicrobial treatment on various dental material surfaces. Mol Oral Microbiol 25:384–390 [View Article][PubMed]
    [Google Scholar]
  20. Liu B. H., Li K. L., Kang K.-L., Huang W.-K., Liao J.-D. ( 2013). In situ biosensing of the nanomechanical property and electrochemical spectroscopy of Streptococcus mutans-containing biofilms. J Phys D Appl Phys 46:275401 [View Article]
    [Google Scholar]
  21. Loesche W. J. ( 1986). Role of Streptococcus mutans in human dental decay. Microbiol Rev 50:353–380[PubMed]
    [Google Scholar]
  22. Loskill P., Zeitz C., Grandthyll S., Thewes N., Müller F., Bischoff M., Herrmann M., Jacobs K. ( 2013). Reduced adhesion of oral bacteria on hydroxyapatite by fluoride treatment. Langmuir 29:5528–5533 [View Article][PubMed]
    [Google Scholar]
  23. Marsh P. D. ( 1994). Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8:263–271[PubMed]
    [Google Scholar]
  24. Marsh P. D. ( 2004). Dental plaque as a microbial biofilm. Caries Res 38:204–211 [View Article][PubMed]
    [Google Scholar]
  25. Marszalek P. E., Lu H., Li H. B., Carrion-Vazquez M., Oberhauser A. F., Schulten K., Fernandez J. M.( 1999). Mechanical unfolding intermediates in titin modules. Nature 402:100–103 [CrossRef]
    [Google Scholar]
  26. Mei L., Busscher H. J., van der Mei H. C., Ren Y. ( 2011). Influence of surface roughness on streptococcal adhesion forces to composite resins. Dent Mater 27:770–778 [View Article][PubMed]
    [Google Scholar]
  27. Morou-Bermudez E., Elias-Boneta A., Billings R. J., Burne R. A., Garcia-Rivas V., Brignoni-Nazario V., Suarez-Perez E. ( 2011). Urease activity in dental plaque and saliva of children during a three-year study period and its relationship with other caries risk factors. Arch Oral Biol 56:1282–1289 [View Article][PubMed]
    [Google Scholar]
  28. Nascimento M. M., Gordan V. V., Garvan C. W., Browngardt C. M., Burne R. A. ( 2009). Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol Immunol 24:89–95 [View Article][PubMed]
    [Google Scholar]
  29. Nascimento M. M., Liu Y., Kalra R., Perry S., Adewumi A., Xu X., Primosch R. E., Burne R. A. ( 2013). Oral arginine metabolism may decrease the risk for dental caries in children. J Dent Res 92:604–608 [View Article][PubMed]
    [Google Scholar]
  30. Paes Leme A. F., Koo H., Bellato C. M., Bedi G., Cury J. A. ( 2006). The role of sucrose in cariogenic dental biofilm formation—new insight. J Dent Res 85:878–887 [View Article][PubMed]
    [Google Scholar]
  31. Paster B. J., Boches S. K., Galvin J. L., Ericson R. E., Lau C. N., Levanos V. A., Sahasrabudhe A., Dewhirst F. E. ( 2001). Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783 [View Article][PubMed]
    [Google Scholar]
  32. Pelling A. E., Li Y., Shi W., Gimzewski J. K. ( 2005). Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc Natl Acad Sci USA 102:6484–6489 [View Article][PubMed]
    [Google Scholar]
  33. Qi F., Chen P., Caufield P. W. ( 2001). The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67:15–21 [View Article][PubMed]
    [Google Scholar]
  34. Razatos A., Ong Y. L., Sharma M. M., Georgiou G. ( 1998). Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc Natl Acad Sci USA 95:11059–11064 [View Article][PubMed]
    [Google Scholar]
  35. Revsbech N. P. ( 2005). Analysis of microbial communities with electrochemical microsensors and microscale biosensors. Methods Enzymol 397:147–166 [View Article][PubMed]
    [Google Scholar]
  36. Schilling K. M., Bowen W. H. ( 1992). Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans . Infect Immun 60:284–295[PubMed]
    [Google Scholar]
  37. Sharma S., Sen P., Mukhopadhyay S. N., Guha S. K. ( 2003). Microbicidal male contraceptive – Risug induced morpho structural damage in E. coli . Colloid Surfaces B 32:43–50 [View Article]
    [Google Scholar]
  38. Sharma S., Cross S. E., Hsueh C., Wali R. P., Stieg A. Z., Gimzewski J. K. ( 2010). Nanocharacterization in dentistry. Int J Mol Sci 11:2523–2545 [View Article][PubMed]
    [Google Scholar]
  39. Sharma S., Grintsevich E. E., Phillips M. L., Reisler E., Gimzewski J. K. ( 2011). Atomic force microscopy reveals drebrin induced remodeling of F-actin with subnanometer resolution. Nano Lett 11:825–827 [View Article][PubMed]
    [Google Scholar]
  40. Sullivan R., Santarpia P., Lavender S., Gittins E., Liu Z., Anderson M. H., He J., Shi W., Eckert R. ( 2011). Clinical efficacy of a specifically targeted antimicrobial peptide mouth rinse: targeted elimination of Streptococcus mutans and prevention of demineralization. Caries Res 45:415–428 [View Article][PubMed]
    [Google Scholar]
  41. Tabak L. A. ( 2006). In defense of the oral cavity: the protective role of the salivary secretions. Pediatr Dent 28:110–117, discussion 192–198[PubMed]
    [Google Scholar]
  42. Thurnheer T., van der Ploeg J. R., Giertsen E., Guggenheim B. ( 2006). Effects of Streptococcus mutans gtfC deficiency on mixed oral biofilms in vitro. Caries Res 40:163–171 [View Article][PubMed]
    [Google Scholar]
  43. VanWuyckhuyse B. C., Perinpanayagam H. E., Bevacqua D., Raubertas R. F., Billings R. J., Bowen W. H., Tabak L. A. ( 1995). Association of free arginine and lysine concentrations in human parotid saliva with caries experience. J Dent Res 74:686–690 [View Article][PubMed]
    [Google Scholar]
  44. Vu B., Chen M., Crawford R. J., Ivanova E. P. ( 2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554 [View Article][PubMed]
    [Google Scholar]
  45. Xiao J., Koo H. ( 2010). Structural organization and dynamics of exopolysaccharide matrix and microcolonies formation by Streptococcus mutans in biofilms. J Appl Microbiol 108:2103–2113[PubMed]
    [Google Scholar]
  46. Yakovenko O., Sharma S., Forero M., Tchesnokova V., Aprikian P., Kidd B., Mach A., Vogel V., Sokurenko E.& other authors ( 2008). FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation. J Biol Chem 283:11596–11605 [CrossRef]
    [Google Scholar]
  47. Yamashita Y., Bowen W. H., Burne R. A., Kuramitsu H. K. ( 1993). Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun 61:3811–3817[PubMed]
    [Google Scholar]
  48. Zero D. T., Fontana M., Martínez-Mier E. A., Ferreira-Zandoná A., Ando M., González-Cabezas C., Bayne S. ( 2009). The biology, prevention, diagnosis and treatment of dental caries: scientific advances in the United States. J Am Dent Assoc 140:Suppl. 125S–34S [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075267-0
Loading
/content/journal/micro/10.1099/mic.0.075267-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed