1887

Abstract

The facultative anaerobic bacterium encounters microaerophilic or anaerobic conditions in various environments, e.g. in soil, in decaying plant material, in food products and in the host gut. To elucidate the adaptation of to variations in oxygen tension, global transcription analyses using DNA microarrays were performed. In total, 139 genes were found to be transcribed differently during aerobic and anaerobic growth; 111 genes were downregulated and 28 genes were upregulated anaerobically. The oxygen-dependent transcription of central metabolic genes is in agreement with results from earlier physiological studies. Of those genes more strongly expressed under lower oxygen tension, 20 were knocked out individually. Growth analysis of these knock out mutants did not indicate an essential function for the respective genes during anaerobiosis. However, even if not essential, transcriptional induction of several genes might optimize the bacterial fitness of in anaerobic niches, e.g. during colonization of the gut. For example, expression of the anaerobically upregulated gene , encoding a fumarate reductase α chain, supported growth on 10 mM fumarate under anaerobic but not under aerobic growth conditions. Genes essential for anaerobic growth were identified by screening a mutant library. Eleven out of 1360 investigated mutants were sensitive to anaerobiosis. All 11 mutants were interrupted in the locus. These results were further confirmed by phenotypic analysis of respective in-frame deletion and complementation mutants, suggesting that the generation of a proton motive force via FF-ATPase is essential for anaerobic proliferation of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075242-0
2014-04-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/752.html?itemId=/content/journal/micro/10.1099/mic.0.075242-0&mimeType=html&fmt=ahah

References

  1. Abachin E., Poyart C., Pellegrini E., Milohanic E., Fiedler F., Berche P., Trieu-Cuot P.. ( 2002;). Formation of d-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. . Mol Microbiol 43:, 1–14. [CrossRef][PubMed]
    [Google Scholar]
  2. Amachi S., Ishikawa K., Toyoda S., Kagawa Y., Yokota A., Tomita F.. ( 1998;). Characterization of a mutant of Lactococcus lactis with reduced membrane-bound ATPase activity under acidic conditions. . Biosci Biotechnol Biochem 62:, 1574–1580. [CrossRef][PubMed]
    [Google Scholar]
  3. Bender G. R., Sutton S. V., Marquis R. E.. ( 1986;). Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. . Infect Immun 53:, 331–338.[PubMed]
    [Google Scholar]
  4. Bijlsma J. J., Lie-A-Ling M., Nootenboom I. C., Vandenbroucke-Grauls C. M., Kusters J. G.. ( 2000;). Identification of loci essential for the growth of Helicobacter pylori under acidic conditions. . J Infect Dis 182:, 1566–1569. [CrossRef][PubMed]
    [Google Scholar]
  5. Bo Andersen J., Roldgaard B. B., Christensen B. B., Licht T. R.. ( 2007;). Oxygen restriction increases the infective potential of Listeria monocytogenes in vitro in Caco-2 cells and in vivo in guinea pigs. . BMC Microbiol 7:, 55. [CrossRef][PubMed]
    [Google Scholar]
  6. Brooijmans R. J., Poolman B., Schuurman-Wolters G. K., de Vos W. M., Hugenholtz J.. ( 2007;). Generation of a membrane potential by Lactococcus lactis through aerobic electron transport. . J Bacteriol 189:, 5203–5209. [CrossRef][PubMed]
    [Google Scholar]
  7. Buchrieser C., Rusniok C., Kunst F., Cossart P., Glaser P..Listeria Consortium ( 2003;). Comparison of the genome sequences of Listeria monocytogenes and Listeria innocua: clues for evolution and pathogenicity. . FEMS Immunol Med Microbiol 35:, 207–213. [CrossRef][PubMed]
    [Google Scholar]
  8. Burkholder K. M., Bhunia A. K.. ( 2010;). Listeria monocytogenes uses Listeria adhesion protein (LAP) to promote bacterial transepithelial translocation and induces expression of LAP receptor Hsp60. . Infect Immun 78:, 5062–5073. [CrossRef][PubMed]
    [Google Scholar]
  9. Burkholder K. M., Kim K. P., Mishra K. K., Medina S., Hahm B. K., Kim H., Bhunia A. K.. ( 2009;). Expression of LAP, a SecA2-dependent secretory protein, is induced under anaerobic environment. . Microbes Infect 11:, 859–867. [CrossRef][PubMed]
    [Google Scholar]
  10. Chaudhuri S., Bruno J. C., Alonzo F. III, Xayarath B., Cianciotto N. P., Freitag N. E.. ( 2010;). Contribution of chitinases to Listeria monocytogenes pathogenesis. . Appl Environ Microbiol 76:, 7302–7305. [CrossRef][PubMed]
    [Google Scholar]
  11. Chico-Calero I., Suárez M., González-Zorn B., Scortti M., Slaghuis J., Goebel W., Vázquez-Boland J. A..European Listeria Genome Consortium ( 2002;). Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. . Proc Natl Acad Sci U S A 99:, 431–436. [CrossRef][PubMed]
    [Google Scholar]
  12. Cotter P. D., Gahan C. G., Hill C.. ( 2000;). Analysis of the role of the Listeria monocytogenes F0F1-ATPase operon in the acid tolerance response. . Int J Food Microbiol 60:, 137–146. [CrossRef][PubMed]
    [Google Scholar]
  13. Deutscher J., Francke C., Postma P. W.. ( 2006;). How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. . Microbiol Mol Biol Rev 70:, 939–1031. [CrossRef][PubMed]
    [Google Scholar]
  14. Edgar R., Domrachev M., Lash A. E.. ( 2002;). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. . Nucleic Acids Res 30:, 207–210. [CrossRef][PubMed]
    [Google Scholar]
  15. Eisenreich W., Slaghuis J., Laupitz R., Bussemer J., Stritzker J., Schwarz C., Schwarz R., Dandekar T., Goebel W., Bacher A.. ( 2006;). 13C isotopologue perturbation studies of Listeria monocytogenes carbon metabolism and its modulation by the virulence regulator PrfA. . Proc Natl Acad Sci U S A 103:, 2040–2045. [CrossRef][PubMed]
    [Google Scholar]
  16. Fox E., O’Mahony T., Clancy M., Dempsey R., O’Brien M., Jordan K.. ( 2009;). Listeria monocytogenes in the Irish dairy farm environment. . J Food Prot 72:, 1450–1456.[PubMed]
    [Google Scholar]
  17. Glaser P., Frangeul L., Buchrieser C., Rusniok C., Amend A., Baquero F., Berche P., Bloecker H., Brandt P.. & other authors ( 2001;). Comparative genomics of Listeria species. . Science 294:, 849–852.[PubMed]
    [Google Scholar]
  18. Haagsma A. C., Driessen N. N., Hahn M. M., Lill H., Bald D.. ( 2010;). ATP synthase in slow- and fast-growing mycobacteria is active in ATP synthesis and blocked in ATP hydrolysis direction. . FEMS Microbiol Lett 313:, 68–74. [CrossRef][PubMed]
    [Google Scholar]
  19. Haima P., van Sinderen D., Schotting H., Bron S., Venema G.. ( 1990;). Development of a beta-galactosidase alpha-complementation system for molecular cloning in Bacillus subtilis. . Gene 86:, 63–69. [CrossRef][PubMed]
    [Google Scholar]
  20. Jones S. A., Chowdhury F. Z., Fabich A. J., Anderson A., Schreiner D. M., House A. L., Autieri S. M., Leatham M. P., Lins J. J.. & other authors ( 2007;). Respiration of Escherichia coli in the mouse intestine. . Infect Immun 75:, 4891–4899. [CrossRef][PubMed]
    [Google Scholar]
  21. Jones S. A., Gibson T., Maltby R. C., Chowdhury F. Z., Stewart V., Cohen P. S., Conway T.. ( 2011;). Anaerobic respiration of Escherichia coli in the mouse intestine. . Infect Immun 79:, 4218–4226. [CrossRef][PubMed]
    [Google Scholar]
  22. Joseph B., Przybilla K., Stühler C., Schauer K., Slaghuis J., Fuchs T. M., Goebel W.. ( 2006;). Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. . J Bacteriol 188:, 556–568. [CrossRef][PubMed]
    [Google Scholar]
  23. Junttila J. R., Niemelä S. I., Hirn J.. ( 1988;). Minimum growth temperatures of Listeria monocytogenes and non-haemolytic Listeria. . J Appl Bacteriol 65:, 321–327. [CrossRef][PubMed]
    [Google Scholar]
  24. Jydegaard-Axelsen A. M., Høiby P. E., Holmstrøm K., Russell N., Knøchel S.. ( 2004;). CO2- and anaerobiosis-induced changes in physiology and gene expression of different Listeria monocytogenes strains. . Appl Environ Microbiol 70:, 4111–4117. [CrossRef][PubMed]
    [Google Scholar]
  25. Kim H., Bhunia A. K.. ( 2013;). Secreted Listeria adhesion protein (Lap) influences Lap-mediated Listeria monocytogenes paracellular translocation through epithelial barrier. . Gut Pathog 5:, 16. [CrossRef][PubMed]
    [Google Scholar]
  26. Koch-Koerfges A., Kabus A., Ochrombel I., Marin K., Bott M.. ( 2012;). Physiology and global gene expression of a Corynebacterium glutamicum ΔF1F0-ATP synthase mutant devoid of oxidative phosphorylation. . Biochim Biophys Acta 1817:, 370–380. [CrossRef][PubMed]
    [Google Scholar]
  27. Koebmann B. J., Nilsson D., Kuipers O. P., Jensen P. R.. ( 2000;). The membrane-bound H+-ATPase complex is essential for growth of Lactococcus lactis. . J Bacteriol 182:, 4738–4743. [CrossRef][PubMed]
    [Google Scholar]
  28. Lee M. S., Dougherty B. A., Madeo A. C., Morrison D. A.. ( 1999;). Construction and analysis of a library for random insertional mutagenesis in Streptococcus pneumoniae: use for recovery of mutants defective in genetic transformation and for identification of essential genes. . Appl Environ Microbiol 65:, 1883–1890.[PubMed]
    [Google Scholar]
  29. Lindén S. K., Bierne H., Sabet C., Png C. W., Florin T. H., McGuckin M. A., Cossart P.. ( 2008;). Listeria monocytogenes internalins bind to the human intestinal mucin MUC2. . Arch Microbiol 190:, 101–104. [CrossRef][PubMed]
    [Google Scholar]
  30. Lungu B., Ricke S. C., Johnson M. G.. ( 2009;). Growth, survival, proliferation and pathogenesis of Listeria monocytogenes under low oxygen or anaerobic conditions: a review. . Anaerobe 15:, 7–17. [CrossRef][PubMed]
    [Google Scholar]
  31. Lyautey E., Lapen D. R., Wilkes G., McCleary K., Pagotto F., Tyler K., Hartmann A., Piveteau P., Rieu A.. & other authors ( 2007;). Distribution and characteristics of Listeria monocytogenes isolates from surface waters of the South Nation River watershed, Ontario, Canada. . Appl Environ Microbiol 73:, 5401–5410. [CrossRef][PubMed]
    [Google Scholar]
  32. McClure P. J., Kelly T. M., Roberts T. A.. ( 1991;). The effects of temperature, pH, sodium chloride and sodium nitrite on the growth of Listeria monocytogenes. . Int J Food Microbiol 14:, 77–91. [CrossRef][PubMed]
    [Google Scholar]
  33. Mertins S., Joseph B., Goetz M., Ecke R., Seidel G., Sprehe M., Hillen W., Goebel W., Müller-Altrock S.. ( 2007;). Interference of components of the phosphoenolpyruvate phosphotransferase system with the central virulence gene regulator PrfA of Listeria monocytogenes. . J Bacteriol 189:, 473–490. [CrossRef][PubMed]
    [Google Scholar]
  34. Palomino J. C., Martin A.. ( 2013;). TMC207 becomes bedaquiline, a new anti-TB drug. . Future Microbiol 8:, 1071–1080. [CrossRef][PubMed]
    [Google Scholar]
  35. Patchett R. A., Kelly A. F., Kroll R. G.. ( 1991;). Respiratory activity in Listeria monocytogenes. . FEMS Microbiol Lett 78:, 95–98. [CrossRef][PubMed]
    [Google Scholar]
  36. Pentecost M., Kumaran J., Ghosh P., Amieva M. R.. ( 2010;). Listeria monocytogenes internalin B activates junctional endocytosis to accelerate intestinal invasion. . PLoS Pathog 6:, e1000900. [CrossRef][PubMed]
    [Google Scholar]
  37. Petran R. L., Zottola E. A.. ( 1989;). A study of factors affecting growth and recovery of Listeria monocytogenes Scott A. . J Food Sci 54:, 458–460. [CrossRef]
    [Google Scholar]
  38. Pfaffl M. W., Horgan G. W., Dempfle L.. ( 2002;). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. . Nucleic Acids Res 30:, e36. [CrossRef][PubMed]
    [Google Scholar]
  39. Pine L., Malcolm G. B., Brooks J. B., Daneshvar M. I.. ( 1989;). Physiological studies on the growth and utilization of sugars by Listeria species. . Can J Microbiol 35:, 245–254. [CrossRef][PubMed]
    [Google Scholar]
  40. Romick T. L., Fleming H. P., McFeeters R. F.. ( 1996;). Aerobic and anaerobic metabolism of Listeria monocytogenes in defined glucose medium. . Appl Environ Microbiol 62:, 304–307.[PubMed]
    [Google Scholar]
  41. Santana M., Ionescu M. S., Vertes A., Longin R., Kunst F., Danchin A., Glaser P.. ( 1994;). Bacillus subtilis F0F1 ATPase: DNA sequence of the atp operon and characterization of atp mutants. . J Bacteriol 176:, 6802–6811.[PubMed]
    [Google Scholar]
  42. Schauer K., Geginat G., Liang C., Goebel W., Dandekar T., Fuchs T. M.. ( 2010;). Deciphering the intracellular metabolism of Listeria monocytogenes by mutant screening and modelling. . BMC Genomics 11:, 573. [CrossRef][PubMed]
    [Google Scholar]
  43. Stritzker J., Janda J., Schoen C., Taupp M., Pilgrim S., Gentschev I., Schreier P., Geginat G., Goebel W.. ( 2004;). Growth, virulence, and immunogenicity of Listeria monocytogenes aro mutants. . Infect Immun 72:, 5622–5629. [CrossRef][PubMed]
    [Google Scholar]
  44. Stritzker J., Schoen C., Goebel W.. ( 2005;). Enhanced synthesis of internalin A in aro mutants of Listeria monocytogenes indicates posttranscriptional control of the inlAB mRNA. . J Bacteriol 187:, 2836–2845. [CrossRef][PubMed]
    [Google Scholar]
  45. Toledo-Arana A., Dussurget O., Nikitas G., Sesto N., Guet-Revillet H., Balestrino D., Loh E., Gripenland J., Tiensuu T.. & other authors ( 2009;). The Listeria transcriptional landscape from saprophytism to virulence. . Nature 459:, 950–956. [CrossRef][PubMed]
    [Google Scholar]
  46. Trivett T. L., Meyer E. A.. ( 1971;). Citrate cycle and related metabolism of Listeria monocytogenes. . J Bacteriol 107:, 770–779.[PubMed]
    [Google Scholar]
  47. Turner A. K., Barber L. Z., Wigley P., Muhammad S., Jones M. A., Lovell M. A., Hulme S., Barrow P. A.. ( 2003;). Contribution of proton-translocating proteins to the virulence of Salmonella enterica serovars Typhimurium, Gallinarum, and Dublin in chickens and mice. . Infect Immun 71:, 3392–3401. [CrossRef][PubMed]
    [Google Scholar]
  48. Weis J., Seeliger H. P.. ( 1975;). Incidence of Listeria monocytogenes in nature. . Appl Microbiol 30:, 29–32.[PubMed]
    [Google Scholar]
  49. Welshimer H. J., Donker-Voet J.. ( 1971;). Listeria monocytogenes in nature. . Appl Microbiol 21:, 516–519.[PubMed]
    [Google Scholar]
  50. Williams T., Bauer S., Beier D., Kuhn M.. ( 2005;). Construction and characterization of Listeria monocytogenes mutants with in-frame deletions in the response regulator genes identified in the genome sequence. . Infect Immun 73:, 3152–3159. [CrossRef][PubMed]
    [Google Scholar]
  51. Wuenscher M. D., Köhler S., Goebel W., Chakraborty T.. ( 1991;). Gene disruption by plasmid integration in Listeria monocytogenes: insertional inactivation of the listeriolysin determinant lisA. . Mol Gen Genet 228:, 177–182. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075242-0
Loading
/content/journal/micro/10.1099/mic.0.075242-0
Loading

Data & Media loading...

Supplements

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error