1887

Abstract

The nucleoids of undamaged cells have a characteristic shape and number, which is dependent on the growth medium. Upon induction of the SOS response by a low dose of UV irradiation an extensive reorganization of the nucleoids occurred. Two distinct phases were observed by fluorescence microscopy. First, the nucleoids were found to change shape and fuse into compact structures at midcell. The compaction of the nucleoids lasted for 10–20 min and was followed by a phase where the DNA was dispersed throughout the cells. This second phase lasted for ~1 h. The compaction was found to be dependent on the recombination proteins RecA, RecO and RecR as well as the SOS-inducible, SMC (structural maintenance of chromosomes)-like protein RecN. RecN protein is produced in high amounts during the first part of the SOS response. It is possible that the RecN-mediated ‘compact DNA’ stage at the beginning of the SOS response serves to stabilize damaged DNA prior to recombination and repair.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075051-0
2014-05-01
2020-07-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/872.html?itemId=/content/journal/micro/10.1099/mic.0.075051-0&mimeType=html&fmt=ahah

References

  1. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. ( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol2:0008 [CrossRef][PubMed]
    [Google Scholar]
  2. Blanco M., Herrera G., Collado P., Rebollo J. E., Botella L. M.. ( 1982;). Influence of RecA protein on induced mutagenesis. Biochimie64:633–636 [CrossRef][PubMed]
    [Google Scholar]
  3. Branzei D., Foiani M.. ( 2010;). Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol11:208–219 [CrossRef][PubMed]
    [Google Scholar]
  4. Brendler T., Sawitzke J., Sergueev K., Austin S.. ( 2000;). A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation. EMBO J19:6249–6258 [CrossRef][PubMed]
    [Google Scholar]
  5. Cazaux C., Larminat F., Defais M.. ( 1991;). Site-directed mutagenesis in the Escherichia coli recA gene. Biochimie73:281–284 [CrossRef][PubMed]
    [Google Scholar]
  6. Clark A. J.. ( 1973;). Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet7:67–86 [CrossRef][PubMed]
    [Google Scholar]
  7. Clark D. J., Maaløe O.. ( 1967;). DNA replication and the division cycle in Escherichia coli . J Mol Biol23:99–112 [CrossRef]
    [Google Scholar]
  8. Courcelle J., Khodursky A., Peter B., Brown P. O., Hanawalt P. C.. ( 2001;). Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli . Genetics158:41–64[PubMed]
    [Google Scholar]
  9. Courcelle C. T., Belle J. J., Courcelle J.. ( 2005;). Nucleotide excision repair or polymerase V-mediated lesion bypass can act to restore UV-arrested replication forks in Escherichia coli . J Bacteriol187:6953–6961 [CrossRef][PubMed]
    [Google Scholar]
  10. Devoret R., Pierre M., Moreau P. L.. ( 1983;). Prophage phi 80 is induced in Escherichia coli K12 recA430 . Mol Gen Genet189:199–206 [CrossRef][PubMed]
    [Google Scholar]
  11. Dewitt S. K., Adelberg E. A.. ( 1962;). The occurrence of a genetic transposition in a strain of Escherichia coli . Genetics47:577–585[PubMed]
    [Google Scholar]
  12. Dutreix M., Bailone A., Devoret R.. ( 1985;). Efficiency of induction of prophage lambda mutants as a function of recA alleles. J Bacteriol161:1080–1085[PubMed]
    [Google Scholar]
  13. Fernández De Henestrosa A. R., Ogi T., Aoyagi S., Chafin D., Hayes J. J., Ohmori H., Woodgate R.. ( 2000;). Identification of additional genes belonging to the LexA regulon in Escherichia coli . Mol Microbiol35:1560–1572 [CrossRef][PubMed]
    [Google Scholar]
  14. Fossum S., Crooke E., Skarstad K.. ( 2007;). Organization of sister origins and replisomes during multifork DNA replication in Escherichia coli . EMBO J26:4514–4522 [CrossRef][PubMed]
    [Google Scholar]
  15. Friedberg E. C., Walker G. C., Siede W., Wood R. D., Schultz R. A., Ellenberger T.. ( 2006;). DNA Repair and Mutagenesis, 2nd edn. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Graumann P. L., Knust T.. ( 2009;). Dynamics of the bacterial SMC complex and SMC-like proteins involved in DNA repair. Chromosome Res17:265–275 [CrossRef][PubMed]
    [Google Scholar]
  17. Grove J. I., Wood S. R., Briggs G. S., Oldham N. J., Lloyd R. G.. ( 2009;). A soluble RecN homologue provides means for biochemical and genetic analysis of DNA double-strand break repair in Escherichia coli . DNA Repair (Amst)8:1434–1443 [CrossRef][PubMed]
    [Google Scholar]
  18. Hegde S., Sandler S. J., Clark A. J., Madiraju M. V.. ( 1995;). recO and recR mutations delay induction of the SOS response in Escherichia coli . Mol Gen Genet246:254–258 [CrossRef][PubMed]
    [Google Scholar]
  19. Heller R. C., Marians K. J.. ( 2006;). Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol7:932–943 [CrossRef][PubMed]
    [Google Scholar]
  20. Hendricks E. C., Szerlong H., Hill T., Kuempel P.. ( 2000;). Cell division, guillotining of dimer chromosomes and SOS induction in resolution mutants (dif, xerC and xerD) of Escherichia coli. Mol Microbiol36973–981[CrossRef]
    [Google Scholar]
  21. Hiraga S., Ichinose C., Niki H., Yamazoe M.. ( 1998;). Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA-protein complexes in E. coli . Mol Cell1:381–387 [CrossRef][PubMed]
    [Google Scholar]
  22. Hiraga S., Ichinose C., Onogi T., Niki H., Yamazoe M.. ( 2000;). Bidirectional migration of SeqA-bound hemimethylated DNA clusters and pairing of oriC copies in Escherichia coli . Genes Cells5:327–341 [CrossRef][PubMed]
    [Google Scholar]
  23. Hirano T.. ( 2005;). SMC proteins and chromosome mechanics: from bacteria to humans. Philos Trans R Soc Lond B Biol Sci360:507–514 [CrossRef][PubMed]
    [Google Scholar]
  24. Kidane D., Sanchez H., Alonso J. C., Graumann P. L.. ( 2004;). Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids. Mol Microbiol52:1627–1639 [CrossRef][PubMed]
    [Google Scholar]
  25. Kowalczykowski S. C., Krupp R. A.. ( 1989;). Biochemical events essential to the recombination activity of Escherichia coli RecA protein. II. Co-dominant effects of RecA142 protein on wild-type RecA protein function. J Mol Biol207:735–747 [CrossRef][PubMed]
    [Google Scholar]
  26. Kowalczykowski S. C., Burk D. L., Krupp R. A.. ( 1989;). Biochemical events essential to the recombination activity of Escherichia coli RecA protein. I. Properties of the mutant RecA142 protein. J Mol Biol207:719–733 [CrossRef][PubMed]
    [Google Scholar]
  27. Kuzminov A.. ( 1995;). Collapse and repair of replication forks in Escherichia coli . Mol Microbiol16:373–384 [CrossRef][PubMed]
    [Google Scholar]
  28. Kuzminov A.. ( 1999;). Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev63:751–813[PubMed]
    [Google Scholar]
  29. Levin-Zaidman S., Frenkiel-Krispin D., Shimoni E., Sabanay I., Wolf S. G., Minsky A.. ( 2000;). Ordered intracellular RecA–DNA assemblies: a potential site of in vivo RecA-mediated activities. Proc Natl Acad Sci U S A97:6791–6796 [CrossRef][PubMed]
    [Google Scholar]
  30. Lloyd R. G., Picksley S. M., Prescott C.. ( 1983;). Inducible expression of a gene specific to the RecF pathway for recombination in Escherichia coli K12. Mol Gen Genet190:162–167 [CrossRef][PubMed]
    [Google Scholar]
  31. Lukas C., Bartek J., Lukas J.. ( 2005;). Imaging of protein movement induced by chromosomal breakage: tiny ‘local’ lesions pose great ‘global’ challenges. Chromosoma114:146–154 [CrossRef][PubMed]
    [Google Scholar]
  32. Mašek F., Skorvaga M., Sedliaková M.. ( 1989;). Repression of damage-inducible (din) genes by the lexA3 mutation or by plasmid carrying the lexA gene; effect on pyrimidine dimer excision in UV-irradiated Escherichia coli . Gene78:195–199 [CrossRef][PubMed]
    [Google Scholar]
  33. McGlynn P., Lloyd R. G.. ( 2002;). Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol3:859–870 [CrossRef][PubMed]
    [Google Scholar]
  34. McGlynn P., Lloyd R. G., Marians K. J.. ( 2001;). Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc Natl Acad Sci U S A98:8235–8240 [CrossRef][PubMed]
    [Google Scholar]
  35. McGrew D. A., Knight K. L.. ( 2003;). Molecular design and functional organization of the RecA protein. Crit Rev Biochem Mol Biol38:385–432 [CrossRef][PubMed]
    [Google Scholar]
  36. Meddows T. R., Savory A. P., Grove J. I., Moore T., Lloyd R. G.. ( 2005;). RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Mol Microbiol57:97–110 [CrossRef][PubMed]
    [Google Scholar]
  37. Michel B., Grompone G., Florès M. J., Bidnenko V.. ( 2004;). Multiple pathways process stalled replication forks. Proc Natl Acad Sci U S A101:12783–12788 [CrossRef][PubMed]
    [Google Scholar]
  38. Misteli T., Soutoglou E.. ( 2009;). The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol10:243–254 [CrossRef][PubMed]
    [Google Scholar]
  39. Molina F., Skarstad K.. ( 2004;). Replication fork and SeqA focus distributions in Escherichia coli suggest a replication hyperstructure dependent on nucleotide metabolism. Mol Microbiol52:1597–1612 [CrossRef][PubMed]
    [Google Scholar]
  40. Morigen O., Odsbu I., Skarstad K.. ( 2009;). Growth rate dependent numbers of SeqA structures organize the multiple replication forks in rapidly growing Escherichia coli . Genes Cells14:643–657 [CrossRef][PubMed]
    [Google Scholar]
  41. Morimatsu K., Kowalczykowski S. C.. ( 2003;). RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell11:1337–1347 [CrossRef][PubMed]
    [Google Scholar]
  42. Nagashima K., Kubota Y., Shibata T., Sakaguchi C., Shinagawa H., Hishida T.. ( 2006;). Degradation of Escherichia coli RecN aggregates by ClpXP protease and its implications for DNA damage tolerance. J Biol Chem281:30941–30946 [CrossRef][PubMed]
    [Google Scholar]
  43. Neher S. B., Villén J., Oakes E. C., Bakalarski C. E., Sauer R. T., Gygi S. P., Baker T. A.. ( 2006;). Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon. Mol Cell22:193–204 [CrossRef][PubMed]
    [Google Scholar]
  44. Norris V., den Blaauwen T., Cabin-Flaman A., Doi R. H., Harshey R., Janniere L., Jimenez-Sanchez A., Jin D. J., Levin P. A.. & other authors ( 2007;). Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev71:230–253 [CrossRef][PubMed]
    [Google Scholar]
  45. Odsbu I., Morigen O., Skarstad K.. ( 2009;). A reduction in ribonucleotide reductase activity slows down the chromosome replication fork but does not change its localization. PLoS ONE4:e7617 [CrossRef][PubMed]
    [Google Scholar]
  46. Onogi T., Niki H., Yamazoe M., Hiraga S.. ( 1999;). The assembly and migration of SeqA-Gfp fusion in living cells of Escherichia coli . Mol Microbiol31:1775–1782 [CrossRef][PubMed]
    [Google Scholar]
  47. Opperman T., Murli S., Smith B. T., Walker G. C.. ( 1999;). A model for a umuDC-dependent prokaryotic DNA damage checkpoint. Proc Natl Acad Sci U S A96:9218–9223 [CrossRef][PubMed]
    [Google Scholar]
  48. Peters J. M., Nishiyama T.. ( 2012;). Sister chromatid cohesion. Cold Spring Harb Perspect Biol4:a011130 [CrossRef][PubMed]
    [Google Scholar]
  49. Picksley S. M., Attfield P. V., Lloyd R. G.. ( 1984;). Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product. Mol Gen Genet195:267–274 [CrossRef][PubMed]
    [Google Scholar]
  50. Pruteanu M., Baker T. A.. ( 2009;). Proteolysis in the SOS response and metal homeostasis in Escherichia coli . Res Microbiol160:677–683 [CrossRef][PubMed]
    [Google Scholar]
  51. Reyes E. D., Patidar P. L., Uranga L. A., Bortoletto A. S., Lusetti S. L.. ( 2010;). RecN is a cohesin-like protein that stimulates intermolecular DNA interactions in vitro . J Biol Chem285:16521–16529 [CrossRef][PubMed]
    [Google Scholar]
  52. Roberts J. W., Roberts C. W.. ( 1981;). Two mutations that alter the regulatory activity of E. coli recA protein. Nature290:422–424 [CrossRef][PubMed]
    [Google Scholar]
  53. Rudolph C. J., Upton A. L., Lloyd R. G.. ( 2007;). Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli . Genes Dev21:668–681 [CrossRef][PubMed]
    [Google Scholar]
  54. Rupp W. D., Howard-Flanders P.. ( 1968;). Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol31:291–304 [CrossRef][PubMed]
    [Google Scholar]
  55. Sassanfar M., Roberts J. W.. ( 1990;). Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol212:79–96 [CrossRef][PubMed]
    [Google Scholar]
  56. Sedgwick S. G.. ( 1975;). Genetic and kinetic evidence for different types of postreplication repair in Escherichia coli B. J Bacteriol123:154–161[PubMed]
    [Google Scholar]
  57. Shechter N., Zaltzman L., Weiner A., Brumfeld V., Shimoni E., Fridmann-Sirkis Y., Minsky A.. ( 2013;). Stress-induced condensation of bacterial genomes results in re-pairing of sister chromosomes: implications for double strand DNA break repair. J Biol Chem288:25659–25667 [CrossRef][PubMed]
    [Google Scholar]
  58. Skarstad K., Boye E.. ( 1988;). Perturbed chromosomal replication in recA mutants of Escherichia coli . J Bacteriol170:2549–2554[PubMed]
    [Google Scholar]
  59. Smith B. T., Grossman A. D., Walker G. C.. ( 2002;). Localization of UvrA and effect of DNA damage on the chromosome of Bacillus subtilis . J Bacteriol184:488–493 [CrossRef][PubMed]
    [Google Scholar]
  60. Stokke C., Flåtten I., Skarstad K.. ( 2012;). An easy-to-use simulation program demonstrates variations in bacterial cell cycle parameters depending on medium and temperature. PLoS ONE7:e30981 [CrossRef][PubMed]
    [Google Scholar]
  61. Ström L., Lindroos H. B., Shirahige K., Sjögren C.. ( 2004;). Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell16:1003–1015 [CrossRef][PubMed]
    [Google Scholar]
  62. Tessman E. S., Peterson P. K.. ( 1985;). Isolation of protease-proficient, recombinase-deficient recA mutants of Escherichia coli K-12. J Bacteriol163:688–695[PubMed]
    [Google Scholar]
  63. Thoms B., Wackernagel W.. ( 1987;). Regulatory role of recF in the SOS response of Escherichia coli: impaired induction of SOS genes by UV irradiation and nalidixic acid in a recF mutant. J Bacteriol169:1731–1736[PubMed]
    [Google Scholar]
  64. Torheim N. K., Boye E., Løbner-Olesen A., Stokke T., Skarstad K.. ( 2000;). The Escherichia coli SeqA protein destabilizes mutant DnaA204 protein. Mol Microbiol37:629–638 [CrossRef][PubMed]
    [Google Scholar]
  65. Umezu K., Kolodner R. D.. ( 1994;). Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J Biol Chem269:30005–30013[PubMed]
    [Google Scholar]
  66. Umezu K., Chi N. W., Kolodner R. D.. ( 1993;). Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc Natl Acad Sci U S A90:3875–3879 [CrossRef][PubMed]
    [Google Scholar]
  67. Waldminghaus T., Skarstad K.. ( 2009;). The Escherichia coli SeqA protein. Plasmid61:141–150 [CrossRef][PubMed]
    [Google Scholar]
  68. Waldminghaus T., Weigel C., Skarstad K.. ( 2012;). Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome. Nucleic Acids Res40:5465–5476 [CrossRef][PubMed]
    [Google Scholar]
  69. Waleh N. S., Stocker B. A.. ( 1979;). Effect of host lex, recA, recF, and uvrD genotypes on the ultraviolet light-protecting and related properties of plasmid R46 in Escherichia coli . J Bacteriol137:830–838[PubMed]
    [Google Scholar]
  70. Watrin E., Peters J. M.. ( 2006;). Cohesin and DNA damage repair. Exp Cell Res312:2687–2693 [CrossRef][PubMed]
    [Google Scholar]
  71. Weel-Sneve R., Kristiansen K. I., Odsbu I., Dalhus B., Booth J., Rognes T., Skarstad K., Bjørås M.. ( 2013;). Single transmembrane peptide DinQ modulates membrane-dependent activities. PLoS Genet9:e1003260 [CrossRef][PubMed]
    [Google Scholar]
  72. Whitby M. C., Lloyd R. G.. ( 1995;). Altered SOS induction associated with mutations in recF, recO and recR . Mol Gen Genet246:174–179 [CrossRef][PubMed]
    [Google Scholar]
  73. Yamazoe M., Adachi S., Kanaya S., Ohsumi K., Hiraga S.. ( 2005;). Sequential binding of SeqA protein to nascent DNA segments at replication forks in synchronized cultures of Escherichia coli . Mol Microbiol55:289–298 [CrossRef][PubMed]
    [Google Scholar]
  74. Zimmerman S. B.. ( 2006;). Shape and compaction of Escherichia coli nucleoids. J Struct Biol156:255–261 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075051-0
Loading
/content/journal/micro/10.1099/mic.0.075051-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error