1887

Abstract

The Gram-positive soil bacterium is able to choose between motile and sessile lifestyles. The sessile way of life, also referred to as biofilm, depends on the formation of an extracellular polysaccharide matrix and some extracellular proteins. Moreover, a significant proportion of cells in a biofilm form spores. The first two genes of the 15-gene operon for extracellular polysaccharide synthesis, and , encode a putative transmembrane modulator protein and a putative protein tyrosine kinase, respectively, with similarity to the TkmA/PtkA modulator/kinase couple. Here we show that the putative kinase EpsB is required for the formation of structured biofilms. However, an mutant is still able to form biofilms. As shown previously, a mutant is also partially defective in biofilm formation, but this defect is related to spore formation in the biofilm. The absence of both kinases resulted in a complete loss of biofilm formation. Thus, EpsB and PtkA fulfil complementary functions in biofilm formation. The activity of bacterial protein tyrosine kinases depends on their interaction with modulator proteins. Our results demonstrate the specific interaction between the putative kinase EpsB and its modulator protein EpsA and suggest that EpsB activity is stimulated by its modulator EpsA.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.074971-0
2014-04-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/682.html?itemId=/content/journal/micro/10.1099/mic.0.074971-0&mimeType=html&fmt=ahah

References

  1. Aguilar C., Vlamakis H., Guzman A., Losick R., Kolter R.. ( 2010;). KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms. . MBio 1:, e00035–e10. [CrossRef][PubMed]
    [Google Scholar]
  2. Arnaud M., Chastanet A., Débarbouillé M.. ( 2004;). New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. . Appl Environ Microbiol 70:, 6887–6891. [CrossRef][PubMed]
    [Google Scholar]
  3. Bechet E., Gruszczyk J., Terreux R., Gueguen-Chaignon V., Vigouroux A., Obadia B., Cozzone A. J., Nessler S., Grangeasse C.. ( 2010;). Identification of structural and molecular determinants of the tyrosine-kinase Wzc and implications in capsular polysaccharide export. . Mol Microbiol 77:, 1315–1325. [CrossRef][PubMed]
    [Google Scholar]
  4. Blair K. M., Turner L., Winkelman J. T., Berg H. C., Kearns D. B.. ( 2008;). A molecular clutch disables flagella in the Bacillus subtilis biofilm. . Science 320:, 1636–1638. [CrossRef][PubMed]
    [Google Scholar]
  5. Branda S. S., González-Pastor J. E., Ben-Yehuda S., Losick R., Kolter R.. ( 2001;). Fruiting body formation by Bacillus subtilis. . Proc Natl Acad Sci U S A 98:, 11621–11626. [CrossRef][PubMed]
    [Google Scholar]
  6. Chai Y., Kolter R., Losick R.. ( 2009;). Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis. . Mol Microbiol 74:, 876–887. [CrossRef][PubMed]
    [Google Scholar]
  7. Chai Y., Norman T., Kolter R., Losick R.. ( 2010;). An epigenetic switch governing daughter cell separation in Bacillus subtilis. . Genes Dev 24:, 754–765. [CrossRef][PubMed]
    [Google Scholar]
  8. Chu F., Kearns D. B., Branda S. S., Kolter R., Losick R.. ( 2006;). Targets of the master regulator of biofilm formation in Bacillus subtilis. . Mol Microbiol 59:, 1216–1228. [CrossRef][PubMed]
    [Google Scholar]
  9. Commichau F. M., Herzberg C., Tripal P., Valerius O., Stülke J.. ( 2007;). A regulatory protein–protein interaction governs glutamate biosynthesis in Bacillus subtilis: the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC. . Mol Microbiol 65:, 642–654. [CrossRef][PubMed]
    [Google Scholar]
  10. Derouiche A., Bidnenko V., Grenha R., Pigonneau N., Ventroux M., Franz-Wachtel M., Nessler S., Noirot-Gros M.-F., Mijakovic I.. ( 2013;). Interaction of bacterial fatty-acid-displaced regulators with DNA is interrupted by tyrosine phosphorylation in the helix-turn-helix domain. . Nucleic Acids Res 41:, 9371–9381. [CrossRef][PubMed]
    [Google Scholar]
  11. Diethmaier C., Pietack N., Gunka K., Wrede C., Lehnik-Habrink M., Herzberg C., Hübner S., Stülke J.. ( 2011;). A novel factor controlling bistability in Bacillus subtilis: the YmdB protein affects flagellin expression and biofilm formation. . J Bacteriol 193:, 5997–6007. [CrossRef][PubMed]
    [Google Scholar]
  12. Diethmaier C., Newman J. A., Kovács A. T., Kaever V., Herzberg C., Rodrigues C., Boonstra M., Kuipers O. P., Lewis R. J., Stülke J.. ( 2014;). The YmdB phosphodiesterase is a global regulator of late adaptive responses in Bacillus subtilis. . J Bacteriol 196:, 265–275. [CrossRef][PubMed]
    [Google Scholar]
  13. Grangeasse C., Nessler S., Mijakovic I.. ( 2012;). Bacterial tyrosine kinases: evolution, biological function and structural insights. . Philos Trans R Soc Lond B Biol Sci 367:, 2640–2655. [CrossRef][PubMed]
    [Google Scholar]
  14. Guérout-Fleury A. M., Shazand K., Frandsen N., Stragier P.. ( 1995;). Antibiotic-resistance cassettes for Bacillus subtilis. . Gene 167:, 335–336. [CrossRef][PubMed]
    [Google Scholar]
  15. Guttenplan S. B., Blair K. M., Kearns D. B.. ( 2010;). The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. . PLoS Genet 6:, e1001243. [CrossRef][PubMed]
    [Google Scholar]
  16. Herzberg C., Weidinger L. A., Dörrbecker B., Hübner S., Stülke J., Commichau F. M.. ( 2007;). SPINE: a method for the rapid detection and analysis of protein–protein interactions in vivo. . Proteomics 7:, 4032–4035. [CrossRef][PubMed]
    [Google Scholar]
  17. Jers C., Pedersen M. M., Paspaliari D. K., Schütz W., Johnsson C., Soufi B., Macek B., Jensen P. R., Mijakovic I.. ( 2010;). Bacillus subtilis BY-kinase PtkA controls enzyme activity and localization of its protein substrates. . Mol Microbiol 77:, 287–299. [CrossRef][PubMed]
    [Google Scholar]
  18. Karimova G., Pidoux J., Ullmann A., Ladant D.. ( 1998;). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. . Proc Natl Acad Sci U S A 95:, 5752–5756. [CrossRef][PubMed]
    [Google Scholar]
  19. Kearns D. B., Losick R.. ( 2003;). Swarming motility in undomesticated Bacillus subtilis. . Mol Microbiol 49:, 581–590. [CrossRef][PubMed]
    [Google Scholar]
  20. Kiley T. B., Stanley-Wall N. R.. ( 2010;). Post-translational control of Bacillus subtilis biofilm formation mediated by tyrosine phosphorylation. . Mol Microbiol 78:, 947–963. [CrossRef][PubMed]
    [Google Scholar]
  21. Kunst F., Rapoport G.. ( 1995;). Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. . J Bacteriol 177:, 2403–2407.[PubMed]
    [Google Scholar]
  22. Lehnik-Habrink M., Pförtner H., Rempeters L., Pietack N., Herzberg C., Stülke J.. ( 2010;). The RNA degradosome in Bacillus subtilis: identification of CshA as the major RNA helicase in the multiprotein complex. . Mol Microbiol 77:, 958–971.[PubMed]
    [Google Scholar]
  23. Lewis R. J., Brannigan J. A., Offen W. A., Smith I., Wilkinson A. J.. ( 1998;). An evolutionary link between sporulation and prophage induction in the structure of a repressor:anti-repressor complex. . J Mol Biol 283:, 907–912. [CrossRef][PubMed]
    [Google Scholar]
  24. Lopez D., Vlamakis H., Kolter R.. ( 2009;). Generation of multiple cell types in Bacillus subtilis. . FEMS Microbiol Rev 33:, 152–163. [CrossRef][PubMed]
    [Google Scholar]
  25. Ludwig H., Meinken C., Matin A., Stülke J.. ( 2002;). Insufficient expression of the ilv-leu operon encoding enzymes of branched-chain amino acid biosynthesis limits growth of a Bacillus subtilis ccpA mutant. . J Bacteriol 184:, 5174–5178. [CrossRef][PubMed]
    [Google Scholar]
  26. McLoon A. L., Guttenplan S. B., Kearns D. B., Kolter R., Losick R.. ( 2011;). Tracing the domestication of a biofilm-forming bacterium. . J Bacteriol 193:, 2027–2034. [CrossRef][PubMed]
    [Google Scholar]
  27. Michna R. H., Commichau F. M., Tödter D., Zschiedrich C. P., Stülke J.. ( 2014;). SubtiWiki–a database for the model organism Bacillus subtilis that links pathway, interaction and expression information. . Nucleic Acids Res 42: (D1), D692–D698. [CrossRef][PubMed]
    [Google Scholar]
  28. Mijakovic I., Poncet S., Boël G., Mazé A., Gillet S., Jamet E., Decottignies P., Grangeasse C., Doublet P.. & other authors ( 2003;). Transmembrane modulator-dependent bacterial tyrosine kinase activates UDP-glucose dehydrogenases. . EMBO J 22:, 4709–4718. [CrossRef][PubMed]
    [Google Scholar]
  29. Morona J. K., Morona R., Miller D. C., Paton J. C.. ( 2003;). Mutational analysis of the carboxy-terminal (YGX)4 repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. . J Bacteriol 185:, 3009–3019. [CrossRef][PubMed]
    [Google Scholar]
  30. Newman J. A., Rodrigues C., Lewis R. J.. ( 2013;). Molecular basis of the activity of SinR protein, the master regulator of biofilm formation in Bacillus subtilis. . J Biol Chem 288:, 10766–10778. [CrossRef][PubMed]
    [Google Scholar]
  31. Ostrowski A., Mehert A., Prescott A., Kiley T. B., Stanley-Wall N. R.. ( 2011;). YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis. . J Bacteriol 193:, 4821–4831. [CrossRef][PubMed]
    [Google Scholar]
  32. Petranovic D., Michelsen O., Zahradka K., Silva C., Petranovic M., Jensen P. R., Mijakovic I.. ( 2007;). Bacillus subtilis strain deficient for the protein-tyrosine kinase PtkA exhibits impaired DNA replication. . Mol Microbiol 63:, 1797–1805. [CrossRef][PubMed]
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  34. Soulat D., Grangeasse C., Vaganay E., Cozzone A. J., Duclos B.. ( 2007;). UDP-acetyl-mannosamine dehydrogenase is an endogenous protein substrate of Staphylococcus aureus protein-tyrosine kinase activity. . J Mol Microbiol Biotechnol 13:, 45–54. [CrossRef][PubMed]
    [Google Scholar]
  35. Veening J. W., Smits W. K., Hamoen L. W., Jongbloed J. D., Kuipers O. P.. ( 2004;). Visualization of differential gene expression by improved cyan fluorescent protein and yellow fluorescent protein production in Bacillus subtilis. . Appl Environ Microbiol 70:, 6809–6815. [CrossRef][PubMed]
    [Google Scholar]
  36. Vlamakis H., Aguilar C., Losick R., Kolter R.. ( 2008;). Control of cell fate by the formation of an architecturally complex bacterial community. . Genes Dev 22:, 945–953. [CrossRef][PubMed]
    [Google Scholar]
  37. Vlamakis H., Chai Y., Beauregard P., Losick R., Kolter R.. ( 2013;). Sticking together: building a biofilm the Bacillus subtilis way. . Nat Rev Microbiol 11:, 157–168. [CrossRef][PubMed]
    [Google Scholar]
  38. Wach A.. ( 1996;). PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. . Yeast 12:, 259–265. [CrossRef][PubMed]
    [Google Scholar]
  39. Whitfield C.. ( 2006;). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. . Annu Rev Biochem 75:, 39–68. [CrossRef][PubMed]
    [Google Scholar]
  40. Winkelman J. T., Bree A. C., Bate A. R., Eichenberger P., Gourse R. L., Kearns D. B.. ( 2013;). RemA is a DNA-binding protein that activates biofilm matrix gene expression in Bacillus subtilis. . Mol Microbiol 88:, 984–997. [CrossRef][PubMed]
    [Google Scholar]
  41. Wugeditsch T., Paiment A., Hocking J., Drummelsmith J., Forrester C., Whitfield C.. ( 2001;). Phosphorylation of Wzc, a tyrosine autokinase, is essential for assembly of group 1 capsular polysaccharides in Escherichia coli. . J Biol Chem 276:, 2361–2371. [CrossRef][PubMed]
    [Google Scholar]
  42. Yasbin R. E., Young F. E.. ( 1974;). Transduction in Bacillus subtilis by bacteriophage SPP1. . J Virol 14:, 1343–1348.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.074971-0
Loading
/content/journal/micro/10.1099/mic.0.074971-0
Loading

Data & Media loading...

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error