1887

Abstract

In inhibition of replication leads to a block of cell division. This checkpoint mechanism ensures that no cell divides without having two complete copies of the genome to pass on to the two daughter cells. The chromosomal site is a 1 kb region that contains binding sites for the DnaA replication initiator protein, and which contributes to the inactivation of DnaA. An excess of sites provided on plasmids has been found to lead to both a delay in initiation of replication and in cell division during exponential growth. Here we have investigated the effect of on the cell division block that occurs upon inhibition of replication initiation in a mutant. We found that this checkpoint mechanism was aided by the presence of . In cells where was deleted or an excess of DnaA was provided, cell division occurred in the absence of replication and anucleate cells were formed. This finding indicates that loss of and/or excess of DnaA protein promote cell division. This conclusion was supported by the finding that the lethality of the division-compromised mutants 84 and 23 was suppressed by deletion of , at the lowest non-permissive temperature. We propose that the cell division block that occurs upon inhibition of DNA replication is, at least in part, due to a drop in the concentration of the ATP–DnaA protein.

Funding
This study was supported by the:
  • , Program of Higher-level Talents of Inner Mongolia University ‘SPH-IMU’ , (Award grant no. Z20090107)
  • , the National Natural Science Foundation of China ‘NSFC’ , (Award grant no. 31060015)
  • , Norwegian Research Council FUGE program
  • , CAMST platform
  • , the FRIBIO program
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.074898-0
2014-04-01
2020-11-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/703.html?itemId=/content/journal/micro/10.1099/mic.0.074898-0&mimeType=html&fmt=ahah

References

  1. Bi E. F., Lutkenhaus J. ( 1991). FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164 [CrossRef][PubMed]
    [Google Scholar]
  2. Bochner B. R., Ames B. N. ( 1982). Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem 257:9759–9769[PubMed]
    [Google Scholar]
  3. Boye E., Nordström K. ( 2003). Coupling the cell cycle to cell growth. EMBO Rep 4:757–760 [CrossRef][PubMed]
    [Google Scholar]
  4. Capaldo F. N., Barbour S. D. ( 1975). DNA content, synthesis and integrity in dividing and non-dividing cells of rec- strains of Escherichia coli K12. J Mol Biol 91:53–66 [CrossRef][PubMed]
    [Google Scholar]
  5. Carl P. L. ( 1970). Escherichia coli mutants with temperature-sensitive synthesis of DNA. Mol Gen Genet 109:107–122 [CrossRef][PubMed]
    [Google Scholar]
  6. Clark D. J., Maaloe O. ( 1967). DNA replication and the division cycle in Escherichia coli. J Mol Biol 23:99–112 [CrossRef]
    [Google Scholar]
  7. D’Ari R., Huisman O. ( 1983). Novel mechanism of cell division inhibition associated with the SOS response in Escherichia coli. J Bacteriol 156:243–250[PubMed]
    [Google Scholar]
  8. Dai K., Lutkenhaus J. ( 1992). The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli. J Bacteriol 174:6145–6151[PubMed]
    [Google Scholar]
  9. Egan A. J. F., Vollmer W. ( 2013). The physiology of bacterial cell division. Ann N Y Acad Sci 1277:8–28 [CrossRef][PubMed]
    [Google Scholar]
  10. Fossum S., Søreide S., Skarstad K. ( 2003). Lack of SeqA focus formation, specific DNA binding and proper protein multimerization in the Escherichia coli sequestration mutant seqA2. Mol Microbiol 47:619–632 [CrossRef][PubMed]
    [Google Scholar]
  11. Garrido T., Sánchez M., Palacios P., Aldea M., Vicente M. ( 1993). Transcription of ftsZ oscillates during the cell cycle of Escherichia coli. EMBO J 12:3957–3965[PubMed]
    [Google Scholar]
  12. Haeusser D. P., Levin P. A. ( 2008). The great divide: coordinating cell cycle events during bacterial growth and division. Curr Opin Microbiol 11:94–99 [CrossRef][PubMed]
    [Google Scholar]
  13. Hansen F. G., Christensen B. B., Atlung T. ( 2007). Sequence characteristics required for cooperative binding and efficient in vivo titration of the replication initiator protein DnaA in E. coli. J Mol Biol 367:942–952 [CrossRef][PubMed]
    [Google Scholar]
  14. Harry E., Monahan L., Thompson L. ( 2006). Bacterial cell division: the mechanism and its precison. International Review of Cytology: a Survey of Cell Biology vol. 25327–94 Kwang W. J. San Diego, CA: Academic Press; [CrossRef]
    [Google Scholar]
  15. Helmstetter C. E., Pierucci O. ( 1968). Cell division during inhibition of deoxyribonucleic acid synthesis in Escherichia coli. J Bacteriol 95:1627–1633[PubMed]
    [Google Scholar]
  16. Hirota Y., Jacob F., Ryter A., Buttin G., Nakai T. ( 1968). On the process of cellular division in Escherichia coli. I. Asymmetrical cell division and production of deoxyribonucleic acid-less bacteria. J Mol Biol 35:175–192 [CrossRef][PubMed]
    [Google Scholar]
  17. Huisman O., D’Ari R. ( 1981). An inducible DNA replication-cell division coupling mechanism in E. coli. Nature 290:797–799 [CrossRef][PubMed]
    [Google Scholar]
  18. Kasho K., Katayama T. ( 2013). DnaA binding locus datA promotes DnaA-ATP hydrolysis to enable cell cycle-coordinated replication initiation. Proc Natl Acad Sci U S A 110:936–941 [CrossRef][PubMed]
    [Google Scholar]
  19. Katayama T., Sekimizu K. ( 1999). Inactivation of Escherichia coli DnaA protein by DNA polymerase III and negative regulations for initiation of chromosomal replication. Biochimie 81:835–840 [CrossRef][PubMed]
    [Google Scholar]
  20. Katayama T., Fujimitsu K., Ogawa T. ( 2001). Multiple pathways regulating DnaA function in Escherichia coli: distinct roles for DnaA titration by the datA locus and the regulatory inactivation of DnaA. Biochimie 83:13–17 [CrossRef][PubMed]
    [Google Scholar]
  21. Katayama T., Ozaki S., Keyamura K., Fujimitsu K. ( 2010). Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC.. Nat Rev Microbiol 8:163–170 [CrossRef][PubMed]
    [Google Scholar]
  22. Kitagawa R., Mitsuki H., Okazaki T., Ogawa T. ( 1996). A novel DnaA protein-binding site at 94.7 min on the Escherichia coli chromosome. Mol Microbiol 19:1137–1147 [CrossRef][PubMed]
    [Google Scholar]
  23. Kitagawa R., Ozaki T., Moriya S., Ogawa T. ( 1998). Negative control of replication initiation by a novel chromosomal locus exhibiting exceptional affinity for Escherichia coli DnaA protein. Genes Dev 12:3032–3043 [CrossRef][PubMed]
    [Google Scholar]
  24. Krause M., Rückert B., Lurz R., Messer W. ( 1997). Complexes at the replication origin of Bacillus subtilis with homologous and heterologous DnaA protein. J Mol Biol 274:365–380 [CrossRef][PubMed]
    [Google Scholar]
  25. Kurokawa K., Nishida S., Emoto A., Sekimizu K., Katayama T. ( 1999). Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli. EMBO J 18:6642–6652 [CrossRef][PubMed]
    [Google Scholar]
  26. Løbner-Olesen A., Boye E., Marinus M. G. ( 1992). Expression of the Escherichia coli dam gene. Mol Microbiol 6:1841–1851 [CrossRef][PubMed]
    [Google Scholar]
  27. Løbner-Olesen A., Slominska-Wojewodzka M., Hansen F. G., Marinus M. G. ( 2008). DnaC inactivation in Escherichia coli K-12 induces the SOS response and expression of nucleotide biosynthesis genes. PLoS ONE 3:e2984 [CrossRef][PubMed]
    [Google Scholar]
  28. Maisnier-Patin S., Nordström K., Dasgupta S. ( 2001). Replication arrests during a single round of replication of the Escherichia coli chromosome in the absence of DnaC activity. Mol Microbiol 42:1371–1382 [CrossRef][PubMed]
    [Google Scholar]
  29. Margolin W. ( 2000). Themes and variations in prokaryotic cell division. FEMS Microbiol Rev 24:531–548 [CrossRef][PubMed]
    [Google Scholar]
  30. Masters M., Paterson T., Popplewell A. G., Owen-Hughes T., Pringle J. H., Begg K. J. ( 1989). The effect of DnaA protein levels and the rate of initiation at oriC on transcription originating in the ftsQ and ftsA genes: in vivo experiments. Mol Gen Genet 216:475–483 [CrossRef][PubMed]
    [Google Scholar]
  31. Messer W., Weigel C. ( 1997). DnaA initiator–also a transcription factor. Mol Microbiol 24:1–6 [CrossRef][PubMed]
    [Google Scholar]
  32. Morigen, Boye E., Skarstad K., Løbner-Olesen A. ( 2001). Regulation of chromosomal replication by DnaA protein availability in Escherichia coli: effects of the datA region. Biochim Biophys Acta 1521:73–80 [CrossRef][PubMed]
    [Google Scholar]
  33. Morigen, Løbner-Olesen A., Skarstad K. ( 2003). Titration of the Escherichia coli DnaA protein to excess datA sites causes destabilization of replication forks, delayed replication initiation and delayed cell division. Mol Microbiol 50:349–362 [CrossRef][PubMed]
    [Google Scholar]
  34. Morigen, Molina F., Skarstad K. ( 2005). Deletion of the datA site does not affect once-per-cell-cycle timing but induces rifampin-resistant replication. J Bacteriol 187:3913–3920 [CrossRef][PubMed]
    [Google Scholar]
  35. Morigen, Odsbu I., Skarstad K. ( 2009). Growth rate dependent numbers of SeqA structures organize the multiple replication forks in rapidly growing Escherichia coli. Genes Cells 14:643–657 [CrossRef][PubMed]
    [Google Scholar]
  36. Nordström K., Bernander R., Dasgupta S. ( 1991). The Escherichia coli cell cycle: one cycle or multiple independent processes that are co-ordinated?. Mol Microbiol 5:769–774 [CrossRef][PubMed]
    [Google Scholar]
  37. Robinson A. C., Kenan D. J., Hatfull G. F., Sullivan N. F., Spiegelberg R., Donachie W. D. ( 1984). DNA sequence and transcriptional organization of essential cell division genes ftsQ and ftsA of Escherichia coli: evidence for overlapping transcriptional units. J Bacteriol 160:546–555[PubMed]
    [Google Scholar]
  38. Skarstad K., Boye E. ( 1993). Degradation of individual chromosomes in recA mutants of Escherichia coli. J Bacteriol 175:5505–5509[PubMed]
    [Google Scholar]
  39. Smith R. W., McAteer S., Masters M. ( 1996). The coupling between ftsZ transcription and initiation of DNA replication is not mediated by the DnaA-boxes upstream of ftsZ or by DnaA. Mol Microbiol 21:361–372 [CrossRef][PubMed]
    [Google Scholar]
  40. Torheim N. K., Boye E., Løbner-Olesen A., Stokke T., Skarstad K. ( 2000). The Escherichia coli SeqA protein destabilizes mutant DnaA204 protein. Mol Microbiol 37:629–638 [CrossRef][PubMed]
    [Google Scholar]
  41. Walker J. R., Pardee A. B. ( 1968). Evidence for a relationship between deoxyribonucleic acid metabolism and septum formation in Escherichia coli. J Bacteriol 95:123–131[PubMed]
    [Google Scholar]
  42. Weiss D. S. ( 2004). Bacterial cell division and the septal ring. Mol Microbiol 54:588–597 [CrossRef][PubMed]
    [Google Scholar]
  43. Withers H. L., Bernander R. ( 1998). Characterization of dnaC2 and dnaC28 mutants by flow cytometry. J Bacteriol 180:1624–1631[PubMed]
    [Google Scholar]
  44. Wold S., Skarstad K., Steen H. B., Stokke T., Boye E. ( 1994). The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate. EMBO J 13:2097–2102[PubMed]
    [Google Scholar]
  45. Zahradka K., Buljubasić M., Petranović M., Zahradka D. ( 2009). Roles of ExoI and SbcCD nucleases in “reckless” DNA degradation in recA mutants of Escherichia coli. J Bacteriol 191:1677–1687 [CrossRef][PubMed]
    [Google Scholar]
  46. Zyskind J. W., Svitil A. L., Stine W. B., Biery M. C., Smith D. W. ( 1992). RecA protein of Escherichia coli and chromosome partitioning. Mol Microbiol 6:2525–2537 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.074898-0
Loading
/content/journal/micro/10.1099/mic.0.074898-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error