Evolution of for maximum HOCl resistance through constitutive expression of the OxyR regulon Free

Abstract

Exposure of cells to stress impairs cellular functions and may cause killing or adaptation. Adaptation can be facilitated by stress-induced mutagenesis or epigenetic changes, i.e. phenotypic variation without mutations. Upon exposure to HOCl, which is produced by the innate immune system upon bacterial infection, bacteria trigger stress responses that enable increased survival against the stress. Here, we addressed the question whether bacteria can adapt to high HOCl doses and if so, how the acquired resistance is facilitated. We evolved cells for maximum HOCl resistance by successively increasing the HOCl concentration in the cultivation medium. HOCl-resistant cells showed broad stress resistance but did not carry any chromosomal mutations as revealed by whole-genome sequencing. According to proteome analysis and analysis of transcript levels of stress-related genes, HOCl resistance was accompanied by altered levels of outer-membrane proteins A, C, F and W, and, most prominently, a constitutively expressed OxyR regulon. Induction of the OxyR regulon is facilitated by a partially oxidized OxyR leading to increased levels of antioxidant proteins such as Dps, AhpC/AhpF and KatG. These changes were maintained in evolved strains even when they were cultivated without stress for a prolonged time, indicating epigenetic changes contributed to stress resistance. This indicated that maximum HOCl resistance was conferred by the accumulated action of the OxyR stress response and other factors such as altered levels of outer-membrane proteins.

Funding
This study was supported by the:
  • Elitenetzwerk Bayern
  • Emmy Noether Programme of the DFG (Award WI 3200/1-1)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.074815-0
2014-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/8/1690.html?itemId=/content/journal/micro/10.1099/mic.0.074815-0&mimeType=html&fmt=ahah

References

  1. Al Mamun A. A., Lombardo M. J., Shee C., Lisewski A. M., Gonzalez C., Lin D., Nehring R. B., Saint-Ruf C., Gibson J. L. & other authors ( 2012). Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science 338:1344–1348 [View Article][PubMed]
    [Google Scholar]
  2. Baharoglu Z., Mazel D. ( 2011). Vibrio cholerae triggers SOS and mutagenesis in response to a wide range of antibiotics: a route towards multiresistance. Antimicrob Agents Chemother 55:2438–2441 [View Article][PubMed]
    [Google Scholar]
  3. Baharoglu Z., Bikard D., Mazel D. ( 2010). Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation. PLoS Genet 6:e1001165 [View Article][PubMed]
    [Google Scholar]
  4. Baharoglu Z., Krin E., Mazel D. ( 2013). RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae. PLoS Genet 9:e1003421 [View Article][PubMed]
    [Google Scholar]
  5. Balaban N. Q., Merrin J., Chait R., Kowalik L., Leibler S. ( 2004). Bacterial persistence as a phenotypic switch. Science 305:1622–1625 [View Article][PubMed]
    [Google Scholar]
  6. Barth E., Gora K. V., Gebendorfer K. M., Settele F., Jakob U., Winter J. ( 2009). Interplay of cellular cAMP levels, σS activity and oxidative stress resistance in Escherichia coli. Microbiology 155:1680–1689 [View Article][PubMed]
    [Google Scholar]
  7. Bennett A. F., Lenski R. E. ( 2007). An experimental test of evolutionary trade-offs during temperature adaptation. Proc Natl Acad Sci U S A 104:Suppl 18649–8654 [View Article][PubMed]
    [Google Scholar]
  8. Bjedov I., Tenaillon O., Gérard B., Souza V., Denamur E., Radman M., Taddei F., Matic I. ( 2003). Stress-induced mutagenesis in bacteria. Science 300:1404–1409 [View Article][PubMed]
    [Google Scholar]
  9. Candeias L. P., Stratford M. R., Wardman P. ( 1994). Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron(II) complex. Free Radic Res 20:241–249 [View Article][PubMed]
    [Google Scholar]
  10. Casadesús J., Low D. A. ( 2013). Programmed heterogeneity: epigenetic mechanisms in bacteria. J Biol Chem 288:13929–13935 [View Article][PubMed]
    [Google Scholar]
  11. Chai Y., Kolter R., Losick R. ( 2010). Reversal of an epigenetic switch governing cell chaining in Bacillus subtilis by protein instability. Mol Microbiol 78:218–229[PubMed]
    [Google Scholar]
  12. Choi H., Kim S., Mukhopadhyay P., Cho S., Woo J., Storz G., Ryu S. E. ( 2001). Structural basis of the redox switch in the OxyR transcription factor. Cell 105:103–113 [View Article][PubMed]
    [Google Scholar]
  13. Cota I., Blanc-Potard A. B., Casadesús J. ( 2012). STM2209-STM2208 (opvAB): a phase variation locus of Salmonella enterica involved in control of O-antigen chain length. PLoS ONE 7:e36863 [View Article][PubMed]
    [Google Scholar]
  14. Cullum A. J., Bennett A. F., Lenski R. E. ( 2001). Evolutionary adaptation to temperature. IX. Preadaptation to novel stressful environments of Escherichia coli adapted to high temperature. Evolution 55:2194–2202 [View Article][PubMed]
    [Google Scholar]
  15. Davidson C. J., Surette M. G. ( 2008). Individuality in bacteria. Annu Rev Genet 42:253–268 [View Article][PubMed]
    [Google Scholar]
  16. Davies M. J. ( 2005). The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109 [View Article][PubMed]
    [Google Scholar]
  17. Dragosits M., Mozhayskiy V., Quinones-Soto S., Park J., Tagkopoulos I. ( 2013). Evolutionary potential, cross-stress behavior and the genetic basis of acquired stress resistance in Escherichia coli. Mol Syst Biol 9:643 [View Article][PubMed]
    [Google Scholar]
  18. Drazic A., Miura H., Peschek J., Le Y., Bach N. C., Kriehuber T., Winter J. ( 2013a). Methionine oxidation activates a transcription factor in response to oxidative stress. Proc Natl Acad Sci U S A 110:9493–9498 [View Article][PubMed]
    [Google Scholar]
  19. Drazic A., Tsoutsoulopoulos A., Peschek J., Gundlach J., Krause M., Bach N. C., Gebendorfer K. M., Winter J. ( 2013b). Role of cysteines in the stability and DNA-binding activity of the hypochlorite-specific transcription factor HypT. PLoS ONE 8:e75683 [View Article][PubMed]
    [Google Scholar]
  20. Dukan S., Touati D. ( 1996). Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol 178:6145–6150[PubMed]
    [Google Scholar]
  21. Dukan S., Dadon S., Smulski D. R., Belkin S. ( 1996). Hypochlorous acid activates the heat shock and soxRS systems of Escherichia coli. Appl Environ Microbiol 62:4003–4008[PubMed]
    [Google Scholar]
  22. Ferenci T. ( 2008). The spread of a beneficial mutation in experimental bacterial populations: the influence of the environment and genotype on the fixation of rpoS mutations. Heredity (Edinb) 100:446–452 [View Article][PubMed]
    [Google Scholar]
  23. Frisch R. L., Su Y., Thornton P. C., Gibson J. L., Rosenberg S. M., Hastings P. J. ( 2010). Separate DNA Pol II- and Pol IV-dependent pathways of stress-induced mutation during double-strand-break repair in Escherichia coli are controlled by RpoS. J Bacteriol 192:4694–4700 [View Article][PubMed]
    [Google Scholar]
  24. Galhardo R. S., Hastings P. J., Rosenberg S. M. ( 2007). Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol 42:399–435 [View Article][PubMed]
    [Google Scholar]
  25. Gebendorfer K. M., Drazic A., Le Y., Gundlach J., Bepperling A., Kastenmüller A., Ganzinger K. A., Braun N., Franzmann T. M., Winter J. ( 2012). Identification of a hypochlorite-specific transcription factor from Escherichia coli. J Biol Chem 287:6892–6903 [View Article][PubMed]
    [Google Scholar]
  26. Gibson J. L., Lombardo M. J., Thornton P. C., Hu K. H., Galhardo R. S., Beadle B., Habib A., Magner D. B., Frost L. S. & other authors ( 2010). The sigma(E) stress response is required for stress-induced mutation and amplification in Escherichia coli. Mol Microbiol 77:415–430 [View Article][PubMed]
    [Google Scholar]
  27. Gray M. J., Wholey W. Y., Jakob U. ( 2013a). Bacterial responses to reactive chlorine species. Annu Rev Microbiol 67:141–160 [View Article][PubMed]
    [Google Scholar]
  28. Gray M. J., Wholey W. Y., Parker B. W., Kim M., Jakob U. ( 2013b). NemR is a bleach-sensing transcription factor. J Biol Chem 288:13789–13798 [View Article][PubMed]
    [Google Scholar]
  29. Greenberg J. T., Monach P., Chou J. H., Josephy P. D., Demple B. ( 1990). Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci U S A 87:6181–6185 [View Article][PubMed]
    [Google Scholar]
  30. Gu M., Imlay J. A. ( 2011). The SoxRS response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol Microbiol 79:1136–1150 [View Article][PubMed]
    [Google Scholar]
  31. Gutierrez A., Laureti L., Crussard S., Abida H., Rodríguez-Rojas A., Blázquez J., Baharoglu Z., Mazel D., Darfeuille F. & other authors ( 2013). β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat Commun 4:1610 [View Article][PubMed]
    [Google Scholar]
  32. Haagmans W., van der Woude M. ( 2000). Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol Microbiol 35:877–887 [View Article][PubMed]
    [Google Scholar]
  33. Hastings P. J., Bull H. J., Klump J. R., Rosenberg S. M. ( 2000). Adaptive amplification: an inducible chromosomal instability mechanism. Cell 103:723–731 [View Article][PubMed]
    [Google Scholar]
  34. Hawkins C. L., Pattison D. I., Davies M. J. ( 2003). Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 25:259–274 [View Article][PubMed]
    [Google Scholar]
  35. Henderson I. R., Owen P. ( 1999). The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and oxyR. J Bacteriol 181:2132–2141[PubMed]
    [Google Scholar]
  36. Hernández S. B., Cota I., Ducret A., Aussel L., Casadesús J. ( 2012). Adaptation and preadaptation of Salmonella enterica to bile. PLoS Genet 8:e1002459 [View Article][PubMed]
    [Google Scholar]
  37. Hernday A., Krabbe M., Braaten B., Low D. ( 2002). Self-perpetuating epigenetic pili switches in bacteria. Proc Natl Acad Sci U S A 99:Suppl 416470–16476 [View Article][PubMed]
    [Google Scholar]
  38. Imlay J. A. ( 2008). Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77:755–776 [View Article][PubMed]
    [Google Scholar]
  39. Imlay J. A. ( 2013). The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol 11:443–454 [View Article][PubMed]
    [Google Scholar]
  40. Imlay J. A., Chin S. M., Linn S. ( 1988). Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240:640–642 [View Article][PubMed]
    [Google Scholar]
  41. Jakob U., Muse W., Eser M., Bardwell J. C. ( 1999). Chaperone activity with a redox switch. Cell 96:341–352 [View Article][PubMed]
    [Google Scholar]
  42. Jannière L., Niaudet B., Pierre E., Ehrlich S. D. ( 1985). Stable gene amplification in the chromosome of Bacillus subtilis. Gene 40:47–55 [View Article][PubMed]
    [Google Scholar]
  43. Kahramanoglou C., Prieto A. I., Khedkar S., Haase B., Gupta A., Benes V., Fraser G. M., Luscombe N. M., Seshasayee A. S. ( 2012). Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat Commun 3:886 [View Article][PubMed]
    [Google Scholar]
  44. Kim S. O., Merchant K., Nudelman R., Beyer W. F. Jr, Keng T., DeAngelo J., Hausladen A., Stamler J. S. ( 2002). OxyR: a molecular code for redox-related signaling. Cell 109:383–396 [View Article][PubMed]
    [Google Scholar]
  45. Klauck E., Typas A., Hengge R. ( 2007). The sigmaS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci Prog 90:103–127[PubMed]
    [Google Scholar]
  46. Kullik I., Toledano M. B., Tartaglia L. A., Storz G. ( 1995). Mutational analysis of the redox-sensitive transcriptional regulator OxyR: regions important for oxidation and transcriptional activation. J Bacteriol 177:1275–1284[PubMed]
    [Google Scholar]
  47. Lange R., Hengge-Aronis R. ( 1991). Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. J Bacteriol 173:4474–4481[PubMed]
    [Google Scholar]
  48. Leichert L. I., Jakob U. ( 2004). Protein thiol modifications visualized in vivo. PLoS Biol 2:e333 [View Article][PubMed]
    [Google Scholar]
  49. Lenski R. E., Mongold J. A., Sniegowski P. D., Travisano M., Vasi F., Gerrish P. J., Schmidt T. M. ( 1998). Evolution of competitive fitness in experimental populations of E. coli: what makes one genotype a better competitor than another?. Antonie van Leeuwenhoek 73:35–47 [View Article][PubMed]
    [Google Scholar]
  50. Lombardo M. J., Aponyi I., Rosenberg S. M. ( 2004). General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli. Genetics 166:669–680 [View Article][PubMed]
    [Google Scholar]
  51. Maisnier-Patin S., Roth J. R., Fredriksson A., Nyström T., Berg O. G., Andersson D. I. ( 2005). Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nat Genet 37:1376–1379 [View Article][PubMed]
    [Google Scholar]
  52. Martinez A., Kolter R. ( 1997). Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol 179:5188–5194[PubMed]
    [Google Scholar]
  53. Matic I., Taddei F., Radman M. ( 2004). Survival versus maintenance of genetic stability: a conflict of priorities during stress. Res Microbiol 155:337–341 [View Article][PubMed]
    [Google Scholar]
  54. Merritt M. E., Donaldson J. R. ( 2009). Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol 58:1533–1541 [View Article][PubMed]
    [Google Scholar]
  55. Militello K. T., Simon R. D., Qureshi M., Maines R., VanHorne M. L., Hennick S. M., Jayakar S. K., Pounder S. ( 2012). Conservation of Dcm-mediated cytosine DNA methylation in Escherichia coli. FEMS Microbiol Lett 328:78–85 [View Article][PubMed]
    [Google Scholar]
  56. Morales E. H., Calderón I. L., Collao B., Gil F., Porwollik S., McClelland M., Saavedra C. P. ( 2012). Hypochlorous acid and hydrogen peroxide-induced negative regulation of Salmonella enterica serovar Typhimurium ompW by the response regulator ArcA. BMC Microbiol 12:63 [View Article][PubMed]
    [Google Scholar]
  57. Nguyen D., Joshi-Datar A., Lepine F., Bauerle E., Olakanmi O., Beer K., McKay G., Siehnel R., Schafhauser J. & other authors ( 2011). Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334:982–986 [View Article][PubMed]
    [Google Scholar]
  58. Palm G. J., Khanh Chi B., Waack P., Gronau K., Becher D., Albrecht D., Hinrichs W., Read R. J., Antelmann H. ( 2012). Structural insights into the redox-switch mechanism of the MarR/DUF24-type regulator HypR. Nucleic Acids Res 40:4178–4192 [View Article][PubMed]
    [Google Scholar]
  59. Parker B. W., Schwessinger E. A., Jakob U., Gray M. J. ( 2013). The RclR protein is a reactive chlorine-specific transcription factor in Escherichia coli. J Biol Chem 288:32574–32584 [View Article][PubMed]
    [Google Scholar]
  60. Roos D., Winterbourn C. C. ( 2002). Immunology. Lethal weapons. Science 296:669–671 [View Article][PubMed]
    [Google Scholar]
  61. Rudolph B., Gebendorfer K. M., Buchner J., Winter J. ( 2010). Evolution of Escherichia coli for growth at high temperatures. J Biol Chem 285:19029–19034 [View Article][PubMed]
    [Google Scholar]
  62. Sandegren L., Andersson D. I. ( 2009). Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 7:578–588 [View Article][PubMed]
    [Google Scholar]
  63. Stewart P. S., Franklin M. J. ( 2008). Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210 [View Article][PubMed]
    [Google Scholar]
  64. Storz G., Hengge R. ( 2011). Bacterial Stress Responses, 2nd edn. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  65. Todd M. J., Lorimer G. H., Thirumalai D. ( 1996). Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism. Proc Natl Acad Sci U S A 93:4030–4035 [View Article][PubMed]
    [Google Scholar]
  66. Tokuriki N., Tawfik D. S. ( 2009). Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459:668–673 [View Article][PubMed]
    [Google Scholar]
  67. Tomoyasu T., Mogk A., Langen H., Goloubinoff P., Bukau B. ( 2001). Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol 40:397–413 [View Article][PubMed]
    [Google Scholar]
  68. Torres-Barceló C., Cabot G., Oliver A., Buckling A., Maclean R. C. ( 2013). A trade-off between oxidative stress resistance and DNA repair plays a role in the evolution of elevated mutation rates in bacteria. Proc Biol Sci 280:20130007 [View Article][PubMed]
    [Google Scholar]
  69. van der Woude M. W. ( 2011). Phase variation: how to create and coordinate population diversity. Curr Opin Microbiol 14:205–211 [View Article][PubMed]
    [Google Scholar]
  70. Wallecha A., Correnti J., Munster V., van der Woude M. ( 2003). Phase variation of Ag43 is independent of the oxidation state of OxyR. J Bacteriol 185:2203–2209 [View Article][PubMed]
    [Google Scholar]
  71. Weber H., Polen T., Heuveling J., Wendisch V. F., Hengge R. ( 2005). Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187:1591–1603 [View Article][PubMed]
    [Google Scholar]
  72. Wimberly H., Shee C., Thornton P. C., Sivaramakrishnan P., Rosenberg S. M., Hastings P. J. ( 2013). R-loops and nicks initiate DNA breakage and genome instability in non-growing Escherichia coli. Nat Commun 4:2115 [View Article][PubMed]
    [Google Scholar]
  73. Winter J., Linke K., Jatzek A., Jakob U. ( 2005). Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33. Mol Cell 17:381–392 [View Article][PubMed]
    [Google Scholar]
  74. Winter J., Ilbert M., Graf P. C., Özcelik D., Jakob U. ( 2008). Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell 135:691–701 [View Article][PubMed]
    [Google Scholar]
  75. Zheng M., Aslund F., Storz G. ( 1998). Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1722 [View Article][PubMed]
    [Google Scholar]
  76. Zheng M., Wang X., Templeton L. J., Smulski D. R., LaRossa R. A., Storz G. ( 2001). DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183:4562–4570 [View Article][PubMed]
    [Google Scholar]
  77. Zhou K., George S. M., Li P. L., Baranyi J. ( 2012). Effect of periodic fluctuation in the osmotic environment on the adaptation of Salmonella. Food Microbiol 30:298–302 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.074815-0
Loading
/content/journal/micro/10.1099/mic.0.074815-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed