1887

Abstract

Clumping factor A (ClfA) is the archetypal fibrinogen-binding surface protein of and a member of the microbial surface component recognizing adhesive matrix molecules (MSCRAMM) family. An N-terminal signal sequence directs export of the MSCRAMM by the Sec pathway and the C-terminal cell wall-anchoring domain allows covalent attachment of ClfA to peptidoglycan by sortase. Region A of ClfA comprises three independently folded subdomains N1, N2 and N3. Subdomains N2N3 comprise IgG-like folds and promote fibrinogen binding. Nothing is known about the structure or function of subdomain N1. Here we demonstrate an unexpected role for N1 in the export and surface localization of ClfA. Attempted expression of a ClfA variant lacking subdomain N1 resulted in impaired growth of and accumulation of ClfA protein in the cytoplasm and cytoplasmic membrane. The presence of residues 211–228 of N1 was required to allow display of ClfA on the bacterial surface. The importance of this region was confirmed when a ClfA variant lacking residues 211–220 was also mislocalized to the cytoplasm and cytoplasmic membrane. However, these residues were not required for export of ClfA lacking the Ser-Asp repeats that link region A to the wall-anchoring domain. Similarly, subdomain N1 of a related MSCRAMM fibronectin-binding protein B was required for export and surface display of the full-length protein, but not a derivative lacking fibronectin-binding repeats. In summary, we demonstrate that residues in the N1 subdomain are required for export and cell wall localization of MSCRAMM proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.074724-0
2014-04-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/4/659.html?itemId=/content/journal/micro/10.1099/mic.0.074724-0&mimeType=html&fmt=ahah

References

  1. Bannoehr J., Ben Zakour N. L., Reglinski M., Inglis N. F., Prabhakaran S., Fossum E., Smith D. G., Wilson G. J., Cartwright R. A.. & other authors ( 2011;). Genomic and surface proteomic analysis of the canine pathogen Staphylococcus pseudintermedius reveals proteins that mediate adherence to the extracellular matrix. . Infect Immun 79:, 3074–3086. [CrossRef][PubMed]
    [Google Scholar]
  2. Bateman B. T., Donegan N. P., Jarry T. M., Palma M., Cheung A. L.. ( 2001;). Evaluation of a tetracycline-inducible promoter in Staphylococcus aureus in vitro and in vivo and its application in demonstrating the role of sigB in microcolony formation. . Infect Immun 69:, 7851–7857. [CrossRef][PubMed]
    [Google Scholar]
  3. Burke F. M., Di Poto A., Speziale P., Foster T. J.. ( 2011;). The A domain of fibronectin-binding protein B of Staphylococcus aureus contains a novel fibronectin binding site. . FEBS J 278:, 2359–2371. [CrossRef][PubMed]
    [Google Scholar]
  4. Carlsson F., Stålhammar-Carlemalm M., Flärdh K., Sandin C., Carlemalm E., Lindahl G.. ( 2006;). Signal sequence directs localized secretion of bacterial surface proteins. . Nature 442:, 943–946. [CrossRef][PubMed]
    [Google Scholar]
  5. Corrigan R. M., Foster T. J.. ( 2009;). An improved tetracycline-inducible expression vector for Staphylococcus aureus.. Plasmid 61:, 126–129. [CrossRef][PubMed]
    [Google Scholar]
  6. DeDent A., Bae T., Missiakas D. M., Schneewind O.. ( 2008;). Signal peptides direct surface proteins to two distinct envelope locations of Staphylococcus aureus.. EMBO J 27:, 2656–2668. [CrossRef][PubMed]
    [Google Scholar]
  7. Deivanayagam C. C., Wann E. R., Chen W., Carson M., Rajashankar K. R., Höök M., Narayana S. V.. ( 2002;). A novel variant of the immunoglobulin fold in surface adhesins of Staphylococcus aureus: crystal structure of the fibrinogen-binding MSCRAMM, clumping factor A. . EMBO J 21:, 6660–6672. [CrossRef][PubMed]
    [Google Scholar]
  8. Downer R., Roche F., Park P. W., Mecham R. P., Foster T. J.. ( 2002;). The elastin-binding protein of Staphylococcus aureus (EbpS) is expressed at the cell surface as an integral membrane protein and not as a cell wall-associated protein. . J Biol Chem 277:, 243–250. [CrossRef][PubMed]
    [Google Scholar]
  9. Duthie E. S., Lorenz L. L.. ( 1952;). Staphylococcal coagulase: mode of action and antigenicity. . J Gen Microbiol 6:, 95–107. [CrossRef][PubMed]
    [Google Scholar]
  10. Fitzgerald J. R., Loughman A., Keane F., Brennan M., Knobel M., Higgins J., Visai L., Speziale P., Cox D., Foster T. J.. ( 2006;). Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcγRIIa receptor. . Mol Microbiol 59:, 212–230. [CrossRef][PubMed]
    [Google Scholar]
  11. Foster T. J., Geoghegan J. A., Ganesh V. K., Höök M.. ( 2013;). Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus.. Nat Rev Microbiol 12:, 49–62. [CrossRef][PubMed]
    [Google Scholar]
  12. Frankel M. B., Wojcik B. M., DeDent A. C., Missiakas D. M., Schneewind O.. ( 2010;). ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.. Mol Microbiol 78:, 238–252.[PubMed]
    [Google Scholar]
  13. Ganesh V. K., Rivera J. J., Smeds E., Ko Y. P., Bowden M. G., Wann E. R., Gurusiddappa S., Fitzgerald J. R., Höök M.. ( 2008;). A structural model of the Staphylococcus aureus ClfA-fibrinogen interaction opens new avenues for the design of anti-staphylococcal therapeutics. . PLoS Pathog 4:, e1000226. [CrossRef][PubMed]
    [Google Scholar]
  14. Ganesh V. K., Barbu E. M., Deivanayagam C. C., Le B., Anderson A. S., Matsuka Y. V., Lin S. L., Foster T. J., Narayana S. V., Höök M.. ( 2011;). Structural and biochemical characterization of Staphylococcus aureus clumping factor B/ligand interactions. . J Biol Chem 286:, 25963–25972. [CrossRef][PubMed]
    [Google Scholar]
  15. Geoghegan J. A., Monk I. R., O’Gara J. P., Foster T. J.. ( 2013;). Subdomains N2N3 of fibronectin binding protein A mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. . J Bacteriol 195:, 2675–2683. [CrossRef][PubMed]
    [Google Scholar]
  16. Hair P. S., Echague C. G., Sholl A. M., Watkins J. A., Geoghegan J. A., Foster T. J., Cunnion K. M.. ( 2010;). Clumping factor A interaction with complement factor I increases C3b cleavage on the bacterial surface of Staphylococcus aureus and decreases complement-mediated phagocytosis. . Infect Immun 78:, 1717–1727. [CrossRef][PubMed]
    [Google Scholar]
  17. Hartford O., Francois P., Vaudaux P., Foster T. J.. ( 1997;). The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the Staphylococcus aureus cell surface. . Mol Microbiol 25:, 1065–1076. [CrossRef][PubMed]
    [Google Scholar]
  18. Heilbronner S., Holden M. T., van Tonder A., Geoghegan J. A., Foster T. J., Parkhill J., Bentley S. D.. ( 2011;). Genome sequence of Staphylococcus lugdunensis N920143 allows identification of putative colonization and virulence factors. . FEMS Microbiol Lett 322:, 60–67. [CrossRef][PubMed]
    [Google Scholar]
  19. Higgins J., Loughman A., van Kessel K. P., van Strijp J. A., Foster T. J.. ( 2006;). Clumping factor A of Staphylococcus aureus inhibits phagocytosis by human polymorphonuclear leucocytes. . FEMS Microbiol Lett 258:, 290–296. [CrossRef][PubMed]
    [Google Scholar]
  20. Josefsson E., Hartford O., O’Brien L., Patti J. M., Foster T.. ( 2001;). Protection against experimental Staphylococcus aureus arthritis by vaccination with clumping factor A, a novel virulence determinant. . J Infect Dis 184:, 1572–1580. [CrossRef][PubMed]
    [Google Scholar]
  21. Keane F. M., Loughman A., Valtulina V., Brennan M., Speziale P., Foster T. J.. ( 2007;). Fibrinogen and elastin bind to the same region within the A domain of fibronectin binding protein A, an MSCRAMM of Staphylococcus aureus.. Mol Microbiol 63:, 711–723. [CrossRef][PubMed]
    [Google Scholar]
  22. Löfblom J., Kronqvist N., Uhlén M., Ståhl S., Wernérus H.. ( 2007;). Optimization of electroporation-mediated transformation: Staphylococcus carnosus as model organism. . J Appl Microbiol 102:, 736–747. [CrossRef][PubMed]
    [Google Scholar]
  23. Lowy F. D.. ( 1998;). Staphylococcus aureus infections. . N Engl J Med 339:, 520–532. [CrossRef][PubMed]
    [Google Scholar]
  24. McAdow M., Kim H. K., Dedent A. C., Hendrickx A. P., Schneewind O., Missiakas D. M.. ( 2011;). Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. . PLoS Pathog 7:, e1002307. [CrossRef][PubMed]
    [Google Scholar]
  25. McAleese F. M., Walsh E. J., Sieprawska M., Potempa J., Foster T. J.. ( 2001;). Loss of clumping factor B fibrinogen binding activity by Staphylococcus aureus involves cessation of transcription, shedding and cleavage by metalloprotease. . J Biol Chem 276:, 29969–29978. [CrossRef][PubMed]
    [Google Scholar]
  26. McDevitt D., Francois P., Vaudaux P., Foster T. J.. ( 1995;). Identification of the ligand-binding domain of the surface-located fibrinogen receptor (clumping factor) of Staphylococcus aureus.. Mol Microbiol 16:, 895–907. [CrossRef][PubMed]
    [Google Scholar]
  27. McDevitt D., Nanavaty T., House-Pompeo K., Bell E., Turner N., McIntire L., Foster T., Höök M.. ( 1997;). Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. . Eur J Biochem 247:, 416–424. [CrossRef][PubMed]
    [Google Scholar]
  28. Monk I. R., Shah I. M., Xu M., Tan M.-W., Foster T. J.. ( 2012;). Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis.. MBio 3:, e00277–11. [CrossRef][PubMed]
    [Google Scholar]
  29. Moreillon P., Entenza J. M., Francioli P., McDevitt D., Foster T. J., François P., Vaudaux P.. ( 1995;). Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. . Infect Immun 63:, 4738–4743.[PubMed]
    [Google Scholar]
  30. Mulcahy M. E., Geoghegan J. A., Monk I. R., O’Keeffe K. M., Walsh E. J., Foster T. J., McLoughlin R. M.. ( 2012;). Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. . PLoS Pathog 8:, e1003092. [CrossRef][PubMed]
    [Google Scholar]
  31. O’Brien L., Kerrigan S. W., Kaw G., Hogan M., Penadés J., Litt D., Fitzgerald D. J., Foster T. J., Cox D.. ( 2002;). Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. . Mol Microbiol 44:, 1033–1044. [CrossRef][PubMed]
    [Google Scholar]
  32. O’Connell D. P., Nanavaty T., McDevitt D., Gurusiddappa S., Höök M., Foster T. J.. ( 1998;). The fibrinogen-binding MSCRAMM (clumping factor) of Staphylococcus aureus has a Ca2+-dependent inhibitory site. . J Biol Chem 273:, 6821–6829. [CrossRef][PubMed]
    [Google Scholar]
  33. Perkins S., Walsh E. J., Deivanayagam C. C., Narayana S. V., Foster T. J., Höök M.. ( 2001;). Structural organization of the fibrinogen-binding region of the clumping factor B MSCRAMM of Staphylococcus aureus.. J Biol Chem 276:, 44721–44728. [CrossRef][PubMed]
    [Google Scholar]
  34. Ponnuraj K., Bowden M. G., Davis S., Gurusiddappa S., Moore D., Choe D., Xu Y., Hook M., Narayana S. V.. ( 2003;). A “dock, lock, and latch” structural model for a staphylococcal adhesin binding to fibrinogen. . Cell 115:, 217–228. [CrossRef][PubMed]
    [Google Scholar]
  35. Que Y. A., François P., Haefliger J. A., Entenza J. M., Vaudaux P., Moreillon P.. ( 2001;). Reassessing the role of Staphylococcus aureus clumping factor and fibronectin-binding protein by expression in Lactococcus lactis.. Infect Immun 69:, 6296–6302. [CrossRef][PubMed]
    [Google Scholar]
  36. Schneewind O., Missiakas D. M.. ( 2012;). Protein secretion and surface display in Gram-positive bacteria. . Philos Trans R Soc Lond B Biol Sci 367:, 1123–1139. [CrossRef][PubMed]
    [Google Scholar]
  37. Schneewind O., Mihaylova-Petkov D., Model P.. ( 1993;). Cell wall sorting signals in surface proteins of gram-positive bacteria. . EMBO J 12:, 4803–4811.[PubMed]
    [Google Scholar]
  38. Schwarz-Linek U., Werner J. M., Pickford A. R., Gurusiddappa S., Kim J. H., Pilka E. S., Briggs J. A., Gough T. S., Höök M.. & other authors ( 2003;). Pathogenic bacteria attach to human fibronectin through a tandem β-zipper. . Nature 423:, 177–181. [CrossRef][PubMed]
    [Google Scholar]
  39. Sibbald M. J., Ziebandt A. K., Engelmann S., Hecker M., de Jong A., Harmsen H. J., Raangs G. C., Stokroos I., Arends J. P.. & other authors ( 2006;). Mapping the pathways to staphylococcal pathogenesis by comparative secretomics. . Microbiol Mol Biol Rev 70:, 755–788. [CrossRef][PubMed]
    [Google Scholar]
  40. Ton-That H., Mazmanian S. K., Faull K. F., Schneewind O.. ( 2000;). Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH2-Gly3 substrates. . J Biol Chem 275:, 9876–9881. [CrossRef][PubMed]
    [Google Scholar]
  41. van Belkum A., Verkaik N. J., de Vogel C. P., Boelens H. A., Verveer J., Nouwen J. L., Verbrugh H. A., Wertheim H. F.. ( 2009;). Reclassification of Staphylococcus aureus nasal carriage types. . J Infect Dis 199:, 1820–1826. [CrossRef][PubMed]
    [Google Scholar]
  42. Vazquez V., Liang X., Horndahl J. K., Ganesh V. K., Smeds E., Foster T. J., Hook M.. ( 2011;). Fibrinogen is a ligand for the Staphylococcus aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMM) bone sialoprotein-binding protein (Bbp). . J Biol Chem 286:, 29797–29805. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.074724-0
Loading
/content/journal/micro/10.1099/mic.0.074724-0
Loading

Data & Media loading...

Supplementary material 

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error