Antibody-mediated inhibition of adenylate cyclase–haemolysin-induced macrophage cytotoxicity is influenced by variations in the bacterial population Free

Abstract

Whooping cough is a vaccine-preventable disease presenting with epidemic cycles linked to natural and/or vaccine-driven evolution of the aetiological agent of the disease, . Adenylate cyclase–haemolysin (AC-Hly) is a major toxin produced by this pathogen, which mediates macrophage apoptosis and . While current acellular pertussis vaccine (APV) formulations do not include AC-Hly, they all contain pertussis toxin and can comprise filamentous haemagglutinin (FHA), which interacts with AC-Hly, and pertactin (PRN), which has been hypothesized also to interact with AC-Hly. We aimed to study the capacity of specific antibodies to inhibit the AC-Hly-mediated cytotoxicity of J774A.1 murine macrophages in a background of a changing bacterial population. We demonstrate that: (i) clinical isolates of different types or PRN phenotype are all cytotoxic and lethal in the mouse model of respiratory infection; (ii) lack of PRN production does not impact AC-Hly-related phenotypes; (iii) anti-AC-Hly antibodies inhibit cell lysis whatever the phenotype of the isolate, while anti-PRN antibodies significantly inhibit cell lysis provided the isolate produces this antigen, which might be relevant for APV-induced immunity; and (iv) anti-FHA antibodies only inhibit lysis induced by isolates collected in 2012, maybe indicating specific characteristics of epidemic lineages of .

Funding
This study was supported by the:
  • Institut Pasteur Foundation
  • GlaxoSmithKline
  • Biologicals
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.074690-0
2014-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/962.html?itemId=/content/journal/micro/10.1099/mic.0.074690-0&mimeType=html&fmt=ahah

References

  1. Advani A., Van der Heide H. G., Hallander H. O., Mooi F. R. ( 2009). Analysis of Swedish Bordetella pertussis isolates with three typing methods: characterization of an epidemic lineage. J Microbiol Methods 78:297–301 [View Article][PubMed]
    [Google Scholar]
  2. Barkoff A. M., Mertsola J., Guillot S., Guiso N., Berbers G., He Q. ( 2012). Appearance of Bordetella pertussis strains not expressing the vaccine antigen pertactin in Finland. Clin Vaccine Immunol 19:1703–1704 [View Article][PubMed]
    [Google Scholar]
  3. Baron S., Njamkepo E., Grimprel E., Begue P., Desenclos J. C., Drucker J., Guiso N. ( 1998). Epidemiology of pertussis in French hospitals in 1993 and 1994: thirty years after a routine use of vaccination. Pediatr Infect Dis J 17:412–418 [View Article][PubMed]
    [Google Scholar]
  4. Betsou F., Sebo P., Guiso N. ( 1993). CyaC-mediated activation is important not only for toxic but also for protective activities of Bordetella pertussis adenylate cyclase–hemolysin. Infect Immun 61:3583–3589[PubMed]
    [Google Scholar]
  5. Bodilis H., Guiso N. ( 2013). Virulence of pertactin-negative Bordetella pertussis isolates from infants, France. Emerg Infect Dis 19:471–474 [View Article][PubMed]
    [Google Scholar]
  6. Bonmarin I., Levy-Bruhl D., Baron S., Guiso N., Njamkepo E., Caro V. Renacoq ( 2007). Pertussis surveillance in French hospitals: results from a 10 year period. Euro Surveill 12:678[PubMed]
    [Google Scholar]
  7. Bouchez V., Caro V., Levillain E., Guigon G., Guiso N. ( 2008). Genomic content of Bordetella pertussis clinical isolates circulating in areas of intensive children vaccination. PLoS ONE 3:e2437 [View Article][PubMed]
    [Google Scholar]
  8. Bouchez V., Brun D., Cantinelli T., Dore G., Njamkepo E., Guiso N. ( 2009). First report and detailed characterization of B. pertussis isolates not expressing pertussis toxin or pertactin. Vaccine 27:6034–6041 [View Article][PubMed]
    [Google Scholar]
  9. Carbonetti N. H. ( 2010). Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol 5:455–469 [View Article][PubMed]
    [Google Scholar]
  10. Carbonetti N. H., Artamonova G. V., Andreasen C., Bushar N. ( 2005). Pertussis toxin and adenylate cyclase toxin provide a one–two punch for establishment of Bordetella pertussis infection of the respiratory tract. Infect Immun 73:2698–2703 [View Article][PubMed]
    [Google Scholar]
  11. Caro V., Njamkepo E., Van Amersfoorth S. C., Mooi F. R., Advani A., Hallander H. O., He Q., Mertsola J., Riffelmann M. & other authors ( 2005). Pulsed-field gel electrophoresis analysis of Bordetella pertussis populations in various European countries with different vaccine policies. Microbes Infect 7:976–982 [View Article][PubMed]
    [Google Scholar]
  12. Caro V., Hot D., Guigon G., Hubans C., Arrivé M., Soubigou G., Renauld-Mongénie G., Antoine R., Locht C. & other authors ( 2006). Temporal analysis of French Bordetella pertussis isolates by comparative whole-genome hybridization. Microbes Infect 8:2228–2235 [View Article][PubMed]
    [Google Scholar]
  13. Chenal-Francisque V., Caro V., Boursaux-Eude C., Guiso N. ( 2009). Genomic analysis of the adenylate cyclase–hemolysin C-terminal region of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Res Microbiol 160:330–336 [View Article][PubMed]
    [Google Scholar]
  14. Cherry J. D., Tan T., Wirsing von König C. H., Forsyth K. D., Thisyakorn U., Greenberg D., Johnson D., Marchant C., Plotkin S. ( 2012). Clinical definitions of pertussis: summary of a Global Pertussis Initiative Roundtable Meeting, February 2011. Clin Infect Dis 54:1756–1764 [View Article][PubMed]
    [Google Scholar]
  15. Coutte L., Antoine R., Drobecq H., Locht C., Jacob-Dubuisson F. ( 2001). Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. EMBO J 20:5040–5048 [View Article][PubMed]
    [Google Scholar]
  16. Fedele G., Bianco M., Ausiello C. M. ( 2013). The virulence factors of Bordetella pertussis: talented modulators of host immune response. Arch Immunol Ther Exp (Warsz) 61:445–457 [View Article][PubMed]
    [Google Scholar]
  17. Gueirard P., Druilhe A., Pretolani M., Guiso N. ( 1998). Role of adenylate cyclase–hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infect Immun 66:1718–1725[PubMed]
    [Google Scholar]
  18. He Q., Mertsola J. ( 2008). Factors contributing to pertussis resurgence. Future Microbiol 3:329–339 [View Article][PubMed]
    [Google Scholar]
  19. Hegerle N., Guiso N. ( 2013). Epidemiology of whooping cough & typing of Bordetella pertussis. Future Microbiol 8:1391–1403 [View Article][PubMed]
    [Google Scholar]
  20. Hegerle N., Paris A. S., Brun D., Dore G., Njamkepo E., Guillot S., Guiso N. ( 2012). Evolution of French Bordetella pertussis and Bordetella parapertussis isolates: increase of bordetellae not expressing pertactin. Clin Microbiol Infect 18:E340–E346 [View Article][PubMed]
    [Google Scholar]
  21. Hegerle N., Rayat L., Dore G., Zidane N., Bedouelle H., Guiso N. ( 2013). In-vitro and in-vivo analysis of the production of the Bordetella type three secretion system effector A in Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Microbes Infect 15:399–408 [View Article][PubMed]
    [Google Scholar]
  22. Hester S. E., Lui M., Nicholson T., Nowacki D., Harvill E. T. ( 2012). Identification of a CO2 responsive regulon in Bordetella. PLoS ONE 7:e47635 [View Article][PubMed]
    [Google Scholar]
  23. Institut de Veille Sanitaire ( 1998). Calendrier vaccinal 1998. Bull Epidémiol Hebd 1998:15
    [Google Scholar]
  24. Institut de Veille Sanitaire ( 2004). Calendrier vaccinal 2004. Bull Epidémiol Hebd 2004:28–29
    [Google Scholar]
  25. Institut de Veille Sanitaire ( 2008). Calendrier vaccinal 2008. Bull Epidémiol Hebd 2008:16–17
    [Google Scholar]
  26. Jacob-Dubuisson F., Locht C. ( 2007). The Bordetella adhesins. Bordetella: Molecular Microbiology.69–97 Locht F. C. Wymondham: Horizon Bioscience;
    [Google Scholar]
  27. Khelef N., Guiso N. ( 1995). Induction of macrophage apoptosis by Bordetella pertussis adenylate cyclase–hemolysin. FEMS Microbiol Lett 134:27–32 [View Article][PubMed]
    [Google Scholar]
  28. Khelef N., Sakamoto H., Guiso N. ( 1992). Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. Microb Pathog 12:227–235 [View Article][PubMed]
    [Google Scholar]
  29. Khelef N., Zychlinsky A., Guiso N. ( 1993). Bordetella pertussis induces apoptosis in macrophages: role of adenylate cyclase–hemolysin. Infect Immun 61:4064–4071[PubMed]
    [Google Scholar]
  30. Khelef N., Bachelet C. M., Vargaftig B. B., Guiso N. ( 1994). Characterization of murine lung inflammation after infection with parental Bordetella pertussis and mutants deficient in adhesins or toxins. Infect Immun 62:2893–2900[PubMed]
    [Google Scholar]
  31. Ladant D., Brezin C., Alonso J. M., Crenon I., Guiso N. ( 1986). Bordetella pertussis adenylate cyclase: purification, characterization, and radioimmunoassay. J Biol Chem 261:16264–16269[PubMed]
    [Google Scholar]
  32. Mattoo S., Cherry J. D. ( 2005). Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18:326–382 [View Article][PubMed]
    [Google Scholar]
  33. Miyaji Y., Otsuka N., Toyoizumi-Ajisaka H., Shibayama K., Kamachi K. ( 2013). Genetic analysis of isolates from the 2008–2010 pertussis epidemic in Japan. PLoS ONE 8:e77165 [View Article][PubMed]
    [Google Scholar]
  34. Mooi F. R., Hallander H., Wirsing von König C. H., Hoet B., Guiso N. ( 2000). Epidemiological typing of Bordetella pertussis isolates: recommendations for a standard methodology. Eur J Clin Microbiol Infect Dis 19:174–181 [View Article][PubMed]
    [Google Scholar]
  35. Mooi F. R., van Loo I. H., van Gent M., He Q., Bart M. J., Heuvelman K. J., de Greeff S. C., Diavatopoulos D., Teunis P. & other authors ( 2009). Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. Emerg Infect Dis 15:1206–1213 [View Article][PubMed]
    [Google Scholar]
  36. Mooi F. R., VAN DER Maas N. A. T., De Melker H. E. ( 2014). Pertussis resurgence: waning immunity and pathogen adaptation - two sides of the same coin. Epidemiol Infect 142:685–694 [View Article][PubMed]
    [Google Scholar]
  37. Njamkepo E., Rimlinger F., Thiberge S., Guiso N. ( 2002). Thirty-five years’ experience with the whole-cell pertussis vaccine in France: vaccine strains analysis and immunogenicity. Vaccine 20:1290–1294 [View Article][PubMed]
    [Google Scholar]
  38. Octavia S., Maharjan R. P., Sintchenko V., Stevenson G., Reeves P. R., Gilbert G. L., Lan R. ( 2011). Insight into evolution of Bordetella pertussis from comparative genomic analysis: evidence of vaccine-driven selection. Mol Biol Evol 28:707–715 [View Article][PubMed]
    [Google Scholar]
  39. Osickova A., Masin J., Fayolle C., Krusek J., Basler M., Pospisilova E., Leclerc C., Osicka R., Sebo P. ( 2010). Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol Microbiol 75:1550–1562 [View Article][PubMed]
    [Google Scholar]
  40. Otsuka N., Han H. J., Toyoizumi-Ajisaka H., Nakamura Y., Arakawa Y., Shibayama K., Kamachi K. ( 2012). Prevalence and genetic characterization of pertactin-deficient Bordetella pertussis in Japan. PLoS ONE 7:e31985 [View Article][PubMed]
    [Google Scholar]
  41. Pawloski L. C., Queenan A. M., Cassiday P. K., Lynch A. S., Harrison M. J., Shang W., Williams M. M., Bowden K. E., Burgos-Rivera B. & other authors ( 2014). Prevalence and molecular characterization of pertactin-deficient Bordetella pertussis in the United States. Clin Vaccine Immunol 21:119–125 [View Article][PubMed]
    [Google Scholar]
  42. Perez Vidakovics M. L., Lamberti Y., van der Pol W. L., Yantorno O., Rodriguez M. E. ( 2006). Adenylate cyclase influences filamentous haemagglutinin-mediated attachment of Bordetella pertussis to epithelial alveolar cells. FEMS Immunol Med Microbiol 48:140–147 [View Article][PubMed]
    [Google Scholar]
  43. Petersen R. F., Dalby T., Dragsted D. M., Mooi F., Lambertsen L. ( 2012). Temporal trends in Bordetella pertussis populations, Denmark, 1949–2010. Emerg Infect Dis 18:767–774[PubMed]
    [Google Scholar]
  44. Plotkin S. A. ( 2014). The pertussis problem. Clin Infect Dis 58:830–833 [View Article][PubMed]
    [Google Scholar]
  45. Queenan A. M., Cassiday P. K., Evangelista A. ( 2013). Pertactin-negative variants of Bordetella pertussis in the United States. N Engl J Med 368:583–584 [View Article][PubMed]
    [Google Scholar]
  46. Quinlan T., Musser K. A., Currenti S. A., Zansky S. M., Halse T. A. ( 2013). Pertactin-negative variants of Bordetella pertussis in New York State: a retrospective analysis, 2004–2013. Mol Cell Probes [View Article][PubMed]
    [Google Scholar]
  47. Weber C., Boursaux-Eude C., Coralie G., Caro V., Guiso N. ( 2001). Polymorphism of Bordetella pertussis isolates circulating for the last 10 years in France, where a single effective whole-cell vaccine has been used for more than 30 years. J Clin Microbiol 39:4396–4403 [View Article][PubMed]
    [Google Scholar]
  48. Zaretzky F. R., Gray M. C., Hewlett E. L. ( 2002). Mechanism of association of adenylate cyclase toxin with the surface of Bordetella pertussis: a role for toxin-filamentous haemagglutinin interaction. Mol Microbiol 45:1589–1598 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.074690-0
Loading
/content/journal/micro/10.1099/mic.0.074690-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed