1887

Abstract

Whooping cough is a vaccine-preventable disease presenting with epidemic cycles linked to natural and/or vaccine-driven evolution of the aetiological agent of the disease, . Adenylate cyclase–haemolysin (AC-Hly) is a major toxin produced by this pathogen, which mediates macrophage apoptosis and . While current acellular pertussis vaccine (APV) formulations do not include AC-Hly, they all contain pertussis toxin and can comprise filamentous haemagglutinin (FHA), which interacts with AC-Hly, and pertactin (PRN), which has been hypothesized also to interact with AC-Hly. We aimed to study the capacity of specific antibodies to inhibit the AC-Hly-mediated cytotoxicity of J774A.1 murine macrophages in a background of a changing bacterial population. We demonstrate that: (i) clinical isolates of different types or PRN phenotype are all cytotoxic and lethal in the mouse model of respiratory infection; (ii) lack of PRN production does not impact AC-Hly-related phenotypes; (iii) anti-AC-Hly antibodies inhibit cell lysis whatever the phenotype of the isolate, while anti-PRN antibodies significantly inhibit cell lysis provided the isolate produces this antigen, which might be relevant for APV-induced immunity; and (iv) anti-FHA antibodies only inhibit lysis induced by isolates collected in 2012, maybe indicating specific characteristics of epidemic lineages of .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.074690-0
2014-05-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/962.html?itemId=/content/journal/micro/10.1099/mic.0.074690-0&mimeType=html&fmt=ahah

References

  1. Advani A., Van der Heide H. G., Hallander H. O., Mooi F. R.. ( 2009;). Analysis of Swedish Bordetella pertussis isolates with three typing methods: characterization of an epidemic lineage. . J Microbiol Methods 78:, 297–301. [CrossRef][PubMed]
    [Google Scholar]
  2. Barkoff A. M., Mertsola J., Guillot S., Guiso N., Berbers G., He Q.. ( 2012;). Appearance of Bordetella pertussis strains not expressing the vaccine antigen pertactin in Finland. . Clin Vaccine Immunol 19:, 1703–1704. [CrossRef][PubMed]
    [Google Scholar]
  3. Baron S., Njamkepo E., Grimprel E., Begue P., Desenclos J. C., Drucker J., Guiso N.. ( 1998;). Epidemiology of pertussis in French hospitals in 1993 and 1994: thirty years after a routine use of vaccination. . Pediatr Infect Dis J 17:, 412–418. [CrossRef][PubMed]
    [Google Scholar]
  4. Betsou F., Sebo P., Guiso N.. ( 1993;). CyaC-mediated activation is important not only for toxic but also for protective activities of Bordetella pertussis adenylate cyclase–hemolysin. . Infect Immun 61:, 3583–3589.[PubMed]
    [Google Scholar]
  5. Bodilis H., Guiso N.. ( 2013;). Virulence of pertactin-negative Bordetella pertussis isolates from infants, France. . Emerg Infect Dis 19:, 471–474. [CrossRef][PubMed]
    [Google Scholar]
  6. Bonmarin I., Levy-Bruhl D., Baron S., Guiso N., Njamkepo E., Caro V..Renacoq ( 2007;). Pertussis surveillance in French hospitals: results from a 10 year period. . Euro Surveill 12:, 678.[PubMed]
    [Google Scholar]
  7. Bouchez V., Caro V., Levillain E., Guigon G., Guiso N.. ( 2008;). Genomic content of Bordetella pertussis clinical isolates circulating in areas of intensive children vaccination. . PLoS ONE 3:, e2437. [CrossRef][PubMed]
    [Google Scholar]
  8. Bouchez V., Brun D., Cantinelli T., Dore G., Njamkepo E., Guiso N.. ( 2009;). First report and detailed characterization of B. pertussis isolates not expressing pertussis toxin or pertactin. . Vaccine 27:, 6034–6041. [CrossRef][PubMed]
    [Google Scholar]
  9. Carbonetti N. H.. ( 2010;). Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. . Future Microbiol 5:, 455–469. [CrossRef][PubMed]
    [Google Scholar]
  10. Carbonetti N. H., Artamonova G. V., Andreasen C., Bushar N.. ( 2005;). Pertussis toxin and adenylate cyclase toxin provide a one–two punch for establishment of Bordetella pertussis infection of the respiratory tract. . Infect Immun 73:, 2698–2703. [CrossRef][PubMed]
    [Google Scholar]
  11. Caro V., Njamkepo E., Van Amersfoorth S. C., Mooi F. R., Advani A., Hallander H. O., He Q., Mertsola J., Riffelmann M.. & other authors ( 2005;). Pulsed-field gel electrophoresis analysis of Bordetella pertussis populations in various European countries with different vaccine policies. . Microbes Infect 7:, 976–982. [CrossRef][PubMed]
    [Google Scholar]
  12. Caro V., Hot D., Guigon G., Hubans C., Arrivé M., Soubigou G., Renauld-Mongénie G., Antoine R., Locht C.. & other authors ( 2006;). Temporal analysis of French Bordetella pertussis isolates by comparative whole-genome hybridization. . Microbes Infect 8:, 2228–2235. [CrossRef][PubMed]
    [Google Scholar]
  13. Chenal-Francisque V., Caro V., Boursaux-Eude C., Guiso N.. ( 2009;). Genomic analysis of the adenylate cyclase–hemolysin C-terminal region of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. . Res Microbiol 160:, 330–336. [CrossRef][PubMed]
    [Google Scholar]
  14. Cherry J. D., Tan T., Wirsing von König C. H., Forsyth K. D., Thisyakorn U., Greenberg D., Johnson D., Marchant C., Plotkin S.. ( 2012;). Clinical definitions of pertussis: summary of a Global Pertussis Initiative Roundtable Meeting, February 2011. . Clin Infect Dis 54:, 1756–1764. [CrossRef][PubMed]
    [Google Scholar]
  15. Coutte L., Antoine R., Drobecq H., Locht C., Jacob-Dubuisson F.. ( 2001;). Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. . EMBO J 20:, 5040–5048. [CrossRef][PubMed]
    [Google Scholar]
  16. Fedele G., Bianco M., Ausiello C. M.. ( 2013;). The virulence factors of Bordetella pertussis: talented modulators of host immune response. . Arch Immunol Ther Exp (Warsz) 61:, 445–457. [CrossRef][PubMed]
    [Google Scholar]
  17. Gueirard P., Druilhe A., Pretolani M., Guiso N.. ( 1998;). Role of adenylate cyclase–hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. . Infect Immun 66:, 1718–1725.[PubMed]
    [Google Scholar]
  18. He Q., Mertsola J.. ( 2008;). Factors contributing to pertussis resurgence. . Future Microbiol 3:, 329–339. [CrossRef][PubMed]
    [Google Scholar]
  19. Hegerle N., Guiso N.. ( 2013;). Epidemiology of whooping cough & typing of Bordetella pertussis. . Future Microbiol 8:, 1391–1403. [CrossRef][PubMed]
    [Google Scholar]
  20. Hegerle N., Paris A. S., Brun D., Dore G., Njamkepo E., Guillot S., Guiso N.. ( 2012;). Evolution of French Bordetella pertussis and Bordetella parapertussis isolates: increase of bordetellae not expressing pertactin. . Clin Microbiol Infect 18:, E340–E346. [CrossRef][PubMed]
    [Google Scholar]
  21. Hegerle N., Rayat L., Dore G., Zidane N., Bedouelle H., Guiso N.. ( 2013;). In-vitro and in-vivo analysis of the production of the Bordetella type three secretion system effector A in Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. . Microbes Infect 15:, 399–408. [CrossRef][PubMed]
    [Google Scholar]
  22. Hester S. E., Lui M., Nicholson T., Nowacki D., Harvill E. T.. ( 2012;). Identification of a CO2 responsive regulon in Bordetella. . PLoS ONE 7:, e47635. [CrossRef][PubMed]
    [Google Scholar]
  23. Institut de Veille Sanitaire ( 1998;). Calendrier vaccinal 1998. . Bull Epidémiol Hebd 1998:, 15.
    [Google Scholar]
  24. Institut de Veille Sanitaire ( 2004;). Calendrier vaccinal 2004. . Bull Epidémiol Hebd 2004:, 28–29.
    [Google Scholar]
  25. Institut de Veille Sanitaire ( 2008;). Calendrier vaccinal 2008. . Bull Epidémiol Hebd 2008:, 16–17.
    [Google Scholar]
  26. Jacob-Dubuisson F., Locht C.. ( 2007;). The Bordetella adhesins. . In Bordetella: Molecular Microbiology. pp. 69–97. Edited by Locht F. C... Wymondham:: Horizon Bioscience;.
    [Google Scholar]
  27. Khelef N., Guiso N.. ( 1995;). Induction of macrophage apoptosis by Bordetella pertussis adenylate cyclase–hemolysin. . FEMS Microbiol Lett 134:, 27–32. [CrossRef][PubMed]
    [Google Scholar]
  28. Khelef N., Sakamoto H., Guiso N.. ( 1992;). Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. . Microb Pathog 12:, 227–235. [CrossRef][PubMed]
    [Google Scholar]
  29. Khelef N., Zychlinsky A., Guiso N.. ( 1993;). Bordetella pertussis induces apoptosis in macrophages: role of adenylate cyclase–hemolysin. . Infect Immun 61:, 4064–4071.[PubMed]
    [Google Scholar]
  30. Khelef N., Bachelet C. M., Vargaftig B. B., Guiso N.. ( 1994;). Characterization of murine lung inflammation after infection with parental Bordetella pertussis and mutants deficient in adhesins or toxins. . Infect Immun 62:, 2893–2900.[PubMed]
    [Google Scholar]
  31. Ladant D., Brezin C., Alonso J. M., Crenon I., Guiso N.. ( 1986;). Bordetella pertussis adenylate cyclase: purification, characterization, and radioimmunoassay. . J Biol Chem 261:, 16264–16269.[PubMed]
    [Google Scholar]
  32. Mattoo S., Cherry J. D.. ( 2005;). Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. . Clin Microbiol Rev 18:, 326–382. [CrossRef][PubMed]
    [Google Scholar]
  33. Miyaji Y., Otsuka N., Toyoizumi-Ajisaka H., Shibayama K., Kamachi K.. ( 2013;). Genetic analysis of isolates from the 2008–2010 pertussis epidemic in Japan. . PLoS ONE 8:, e77165. [CrossRef][PubMed]
    [Google Scholar]
  34. Mooi F. R., Hallander H., Wirsing von König C. H., Hoet B., Guiso N.. ( 2000;). Epidemiological typing of Bordetella pertussis isolates: recommendations for a standard methodology. . Eur J Clin Microbiol Infect Dis 19:, 174–181. [CrossRef][PubMed]
    [Google Scholar]
  35. Mooi F. R., van Loo I. H., van Gent M., He Q., Bart M. J., Heuvelman K. J., de Greeff S. C., Diavatopoulos D., Teunis P.. & other authors ( 2009;). Bordetella pertussis strains with increased toxin production associated with pertussis resurgence. . Emerg Infect Dis 15:, 1206–1213. [CrossRef][PubMed]
    [Google Scholar]
  36. Mooi F. R., VAN DER Maas N. A. T., De Melker H. E.. ( 2014;). Pertussis resurgence: waning immunity and pathogen adaptation - two sides of the same coin. . Epidemiol Infect 142:, 685–694. [CrossRef][PubMed]
    [Google Scholar]
  37. Njamkepo E., Rimlinger F., Thiberge S., Guiso N.. ( 2002;). Thirty-five years’ experience with the whole-cell pertussis vaccine in France: vaccine strains analysis and immunogenicity. . Vaccine 20:, 1290–1294. [CrossRef][PubMed]
    [Google Scholar]
  38. Octavia S., Maharjan R. P., Sintchenko V., Stevenson G., Reeves P. R., Gilbert G. L., Lan R.. ( 2011;). Insight into evolution of Bordetella pertussis from comparative genomic analysis: evidence of vaccine-driven selection. . Mol Biol Evol 28:, 707–715. [CrossRef][PubMed]
    [Google Scholar]
  39. Osickova A., Masin J., Fayolle C., Krusek J., Basler M., Pospisilova E., Leclerc C., Osicka R., Sebo P.. ( 2010;). Adenylate cyclase toxin translocates across target cell membrane without forming a pore. . Mol Microbiol 75:, 1550–1562. [CrossRef][PubMed]
    [Google Scholar]
  40. Otsuka N., Han H. J., Toyoizumi-Ajisaka H., Nakamura Y., Arakawa Y., Shibayama K., Kamachi K.. ( 2012;). Prevalence and genetic characterization of pertactin-deficient Bordetella pertussis in Japan. . PLoS ONE 7:, e31985. [CrossRef][PubMed]
    [Google Scholar]
  41. Pawloski L. C., Queenan A. M., Cassiday P. K., Lynch A. S., Harrison M. J., Shang W., Williams M. M., Bowden K. E., Burgos-Rivera B.. & other authors ( 2014;). Prevalence and molecular characterization of pertactin-deficient Bordetella pertussis in the United States. . Clin Vaccine Immunol 21:, 119–125. [CrossRef][PubMed]
    [Google Scholar]
  42. Perez Vidakovics M. L., Lamberti Y., van der Pol W. L., Yantorno O., Rodriguez M. E.. ( 2006;). Adenylate cyclase influences filamentous haemagglutinin-mediated attachment of Bordetella pertussis to epithelial alveolar cells. . FEMS Immunol Med Microbiol 48:, 140–147. [CrossRef][PubMed]
    [Google Scholar]
  43. Petersen R. F., Dalby T., Dragsted D. M., Mooi F., Lambertsen L.. ( 2012;). Temporal trends in Bordetella pertussis populations, Denmark, 1949–2010. . Emerg Infect Dis 18:, 767–774.[PubMed]
    [Google Scholar]
  44. Plotkin S. A.. ( 2014;). The pertussis problem. . Clin Infect Dis 58:, 830–833. [CrossRef][PubMed]
    [Google Scholar]
  45. Queenan A. M., Cassiday P. K., Evangelista A.. ( 2013;). Pertactin-negative variants of Bordetella pertussis in the United States. . N Engl J Med 368:, 583–584. [CrossRef][PubMed]
    [Google Scholar]
  46. Quinlan T., Musser K. A., Currenti S. A., Zansky S. M., Halse T. A.. ( 2013;). Pertactin-negative variants of Bordetella pertussis in New York State: a retrospective analysis, 2004–2013. . Mol Cell Probes. [CrossRef][PubMed]
    [Google Scholar]
  47. Weber C., Boursaux-Eude C., Coralie G., Caro V., Guiso N.. ( 2001;). Polymorphism of Bordetella pertussis isolates circulating for the last 10 years in France, where a single effective whole-cell vaccine has been used for more than 30 years. . J Clin Microbiol 39:, 4396–4403. [CrossRef][PubMed]
    [Google Scholar]
  48. Zaretzky F. R., Gray M. C., Hewlett E. L.. ( 2002;). Mechanism of association of adenylate cyclase toxin with the surface of Bordetella pertussis: a role for toxin-filamentous haemagglutinin interaction. . Mol Microbiol 45:, 1589–1598. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.074690-0
Loading
/content/journal/micro/10.1099/mic.0.074690-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error